[1]

Zhang H, Bhunia K, Munoz N, Li L, Dolgovskij M, et al. 2017. Linking morphology changes to barrier properties of polymeric packaging for microwave-assisted thermal sterilized food. Journal of Applied Polymer Science 134:45481

doi: 10.1002/app.45481
[2]

Ramaswamy H, Tang J. 2008. Microwave and Radio Frequency Heating. Food Science and Technology International 14:423−27

doi: 10.1177/1082013208100534
[3]

Patel J, Parhi A, Al-Ghamdi S, Sonar CR, Mattinson DS, et al. 2020. Stability of vitamin C, color, and garlic aroma of garlic mashed potatoes in polymer packages processed with microwave-assisted thermal sterilization technology. Journal of Food Science 85:2843−51

doi: 10.1111/1750-3841.15366
[4]

Tang J. 2015. Unlocking Potentials of Microwaves for Food Safety and Quality. Journal of Food Science 80:E1776−E1793

doi: 10.1111/1750-3841.12959
[5]

Ross C, Sablani S, Tang J. 2023. Preserving Ready-to-Eat Meals Using Microwave Technologies for Future Space Programs. Foods 12:1322

doi: 10.3390/foods12061322
[6]

Sun T, Tang J, Powers JR. 2007. Antioxidant activity and quality of asparagus affected by microwave-circulated water combination and conventional sterilization. Food Chemistry 100:813−19

doi: 10.1016/j.foodchem.2005.10.047
[7]

Patel J, Al-Ghamdi S, Zhang H, Queiroz R, Tang J, et al. 2019. Determining shelf life of ready-to-eat macaroni and cheese in high barrier and oxygen scavenger packaging sterilized via microwave-assisted thermal sterilization. Food and Bioprocess Technology 12:1516−26

doi: 10.1007/s11947-019-02310-1
[8]

Zhang H, Patel J, Bhunia K, Al-Ghamdi S, Sonar CR, et al. 2019. Color, vitamin C, β-carotene and sensory quality retention in microwave-assisted thermally sterilized sweet potato puree: Effects of polymeric package gas barrier during storage. Food Packaging and Shelf Life 21:100324

doi: 10.1016/j.fpsl.2019.100324
[9]

Barnett SM, Sablani SS, Tang J, Ross CF. 2020. The potential for microwave technology and the ideal profile method to aid in salt reduction. Journal of Food Science 85:600−10

doi: 10.1111/1750-3841.15034
[10]

Patel J, Sonar CR, Al-Ghamdi S, Tang Z, Yang T, et al. 2021. Influence of ultra-high barrier packaging on the shelf-life of microwave-assisted thermally sterilized chicken pasta. LWT 136:110287

doi: 10.1016/j.lwt.2020.110287
[11]

Patel J, Parhi A, Tang Z, Tang J, Sablani SS. 2023. Storage stability of vitamin C fortified purple mashed potatoes processed with microwave-assisted thermal sterilization system. Food Innovation and Advances 2:106−14

doi: 10.48130/FIA-2023-0013
[12]

Sonar CR, Rasco B, Tang J, Sablani SS. 2019. Natural color pigments: oxidative stability and degradation kinetics during storage in thermally pasteurized vegetable purees. Journal of the Science of Food and Agriculture 99:5934−45

doi: 10.1002/jsfa.9868
[13]

Sonar CR, Paccola CS, Al-Ghamdi S, Rasco B, Tang J, et al. 2019. Stability of color, β-carotene, and ascorbic acid in thermally pasteurized carrot puree to the storage temperature and gas barrier properties of selected packaging films. Journal of Food Process Engineering 42:e13074

doi: 10.1111/jfpe.13074
[14]

Jiang T, Mao Y, Sui L, Yang N, Li S, et al. 2019. Degradation of anthocyanins and polymeric color formation during heat treatment of purple sweet potato extract at different pH. Food Chemistry 274:460−70

doi: 10.1016/j.foodchem.2018.07.141
[15]

Sadowska-Bartosz I, Bartosz G. 2021. Biological properties and applications of betalains. Molecules 26:2520

doi: 10.3390/molecules26092520
[16]

Martin D, Amado AM, Gonzálvez AG, Marques MPM, Batista de Carvalho LAE, et al. 2019. FTIR spectroscopy and DFT calculations to probe the kinetics of β-carotene thermal degradation. Journal of Physical Chemistry A 123:5266−73

doi: 10.1021/acs.jpca.9b02327
[17]

Gezahegn Y, Tang J, Pedrow P, Sablani SS, Tang Z, et al. 2024. Development and validation of engineering charts: Heating time and optimal salt content prediction for microwave assisted thermal sterilization. Journal of Food Engineering 369:111909

doi: 10.1016/j.jfoodeng.2023.111909
[18]

Tang Z, Mikhaylenko G, Liu F, Mah JH, Pandit R, et al. 2008. Microwave sterilization of sliced beef in gravy in 7-oz trays. Journal of Food Engineering 89:375−83

doi: 10.1016/j.jfoodeng.2008.04.025
[19]

Parhi A, Tang J, Sablani SS. 2020. Functionality of ultra-high barrier metal oxide-coated polymer films for in-package, thermally sterilized food products. Food Packaging and Shelf Life 25:100514

doi: 10.1016/j.fpsl.2020.100514
[20]

Zhang H, Bhunia K, Kuang P, Tang J, Rasco B, et al. 2016. Effects of oxygen and water vapor transmission rates of polymeric pouches on oxidative changes of microwave-sterilized mashed potato. Food and Bioprocess Technology 9:341−51

doi: 10.1007/s11947-015-1628-3
[21]

Albahr Z, Al-Ghamdi S, Tang J, Sablani SS. 2022. Pressure-assisted thermal sterilization and storage stability of avocado puree in high barrier polymeric packaging. Food and Bioprocess Technology 15:2616−28

doi: 10.1007/s11947-022-02904-2
[22]

Singh H, Ramaswamy HS. 2023. Thermal processing of acidified vegetables: Effect on process time-temperature, color and texture. Processes 11:1272

doi: 10.3390/pr11041272
[23]

Prieto-Santiago V, Cavia MM, Alonso-Torre SR, Carrillo C. 2020. Relationship between color and betalain content in different thermally treated beetroot products. LWT - Journal of Food Science and Technology 57:3305−13

doi: 10.1007/s13197-020-04363-z
[24]

Ubeira-Iglesias M, Wilches-Pérez D, Cavia MM, Alonso-Torre S, Carrillo C. 2019. High hydrostatic pressure processing of beetroot juice: effects on nutritional, sensory and microbiological quality. High Pressure Research 39:691−706

doi: 10.1080/08957959.2019.1666842
[25]

Al-Ghamdi S, Sonar CR, Patel J, Albahr Z, Sablani SS. 2020. High pressure-assisted thermal sterilization of low-acid fruit and vegetable purees: Microbial safety, nutrient, quality, and packaging evaluation. Food Control 114:107233

doi: 10.1016/j.foodcont.2020.107233
[26]

Paciulli M, Medina-Meza IG, Chiavaro E, Barbosa-Cánovas GV. 2016. Impact of thermal and high pressure processing on quality parameters of beetroot (Beta vulgaris L.). LWT - Food Science and Technology 68:98−104

doi: 10.1016/j.lwt.2015.12.029
[27]

Yuan L, Cheng F, Yi J, Cai S, Liao X, et al. 2022. Effect of high-pressure processing and thermal treatments on color and in vitro bioaccessibility of anthocyanin and antioxidants in cloudy pomegranate juice. Food Chemistry 373:131397

doi: 10.1016/j.foodchem.2021.131397
[28]

Patras A, Brunton NP, Da Pieve S, Butler F. 2009. Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. Innovative Food Science & Emerging Technologies 10:308−13

doi: 10.1016/j.ifset.2008.12.004
[29]

Szczepańska J, Barba FJ, Skąpska S, Marszałek K. 2020. High pressure processing of carrot juice: Effect of static and multi-pulsed pressure on the polyphenolic profile, oxidoreductases activity and colour. Food Chemistry 307:125549

doi: 10.1016/j.foodchem.2019.125549
[30]

Vervoort L, Van der Plancken I, Grauwet T, Verlinde P, Matser A, et al. 2012. Thermal versus high pressure processing of carrots: A comparative pilot-scale study on equivalent basis. Innovative Food Science & Emerging Technologies 15:1−13

doi: 10.1016/j.ifset.2012.02.009
[31]

Chen BH, Peng HY, Chen HE. 1995. Changes of carotenoids, color, and vitamin A contents during processing of carrot juice. Journal of Agricultural and Food Chemistry 43:1912−18

doi: 10.1021/jf00055a029
[32]

Peng J, Tang J, Luan D, Liu F, Tang Z, et al. 2017. Microwave pasteurization of pre-packaged carrots. Journal of Food Engineering 202:56−64

doi: 10.1016/j.jfoodeng.2017.01.003
[33]

Ayvaz H, Schirmer S, Parulekar Y, Balasubramaniam VM, Somerville JA, et al. 2012. Influence of selected packaging materials on some quality aspects of pressure-assisted thermally processed carrots during storage. LWT - Food Science and Technology 46:437−47

doi: 10.1016/j.lwt.2011.12.004
[34]

Jiratanan T, Liu RH. 2004. Antioxidant activity of processed table beets (Beta vulgaris var, conditiva) and green beans (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry 52:2659−70

doi: 10.1021/jf034861d
[35]

Von Elbe JH, Schwartz SJ, Hildenbrand BE. 1981. Loss and regeneration of betacyanin pigments during processing of red beets. Journal of Food Science 46:1713−15

doi: 10.1111/j.1365-2621.1981.tb04470.x
[36]

Herbach KM, Stintzing FC, Carle R. 2006. Betalain stability and degradation - structural and chromatic aspects. Journal of Food Science 71:R41−R50

doi: 10.1111/j.1750-3841.2006.00022.x
[37]

Huang AS, Elbe JHV. 1985. Kinetics of the degradation and regeneration of betanine. Journal of Food Science 50:1115−20

doi: 10.1111/j.1365-2621.1985.tb13024.x
[38]

Volden J, Borge GIA, Bengtsson GB, Hansen M, Thygesen IE, et al. 2008. Effect of thermal treatment on glucosinolates and antioxidant-related parameters in red cabbage (Brassica oleracea L. ssp.capitata f. rubra). Food Chemistry 109:595−605

doi: 10.1016/j.foodchem.2008.01.010
[39]

Ekici L, Simsek Z, Ozturk I, Sagdic O, Yetim H. 2014. Effects of temperature, time, and pH on the stability of anthocyanin extracts: Prediction of total anthocyanin content using nonlinear models. Food Analytical Methods 7:1328−36

doi: 10.1007/s12161-013-9753-y
[40]

Alighourchi H, Barzegar M. 2009. Some physicochemical characteristics and degradation kinetic of anthocyanin of reconstituted pomegranate juice during storage. Journal of Food Engineering 90:179−85

doi: 10.1016/j.jfoodeng.2008.06.019
[41]

Tola YB, Ramaswamy, HS. 2014. Effect of novel processing techniques on texture softening and β-carotene content of thermally processed carrots. Food and Bioprocess Technology 7:2986−99

doi: 10.1007/s11947-014-1286-x
[42]

Buvé C, Kebede BT, De Batselier C, Carrillo C, Pham HTT, et al. 2018. Kinetics of colour changes in pasteurised strawberry juice during storage. Journal of Food Engineering 216:42−51

doi: 10.1016/j.jfoodeng.2017.08.002