[1] |
Peña-Neira A, Fernández de Simón B, García-Vallejo MC, Hernández T, Cadahía E, et al. 2000. Presence of cork-taint responsible compounds in wines and their cork stoppers. European Food Research and Technology 211:257−61 doi: 10.1007/s002170000193 |
[2] |
Keng A, Botezatu A. 2023. Uncorking haloanisoles in wine. Molecules 28:2532 doi: 10.3390/molecules28062532 |
[3] |
Jové P, Pareras A, De Nadal R, Verdum M. 2021. Development and optimization of a quantitative analysis of main odorants causing off flavours in cork stoppers using headspace solid-phase microextraction gas chromatography tandem mass spectrometry. Journal of Mass Spectrometry 56:e4728 doi: 10.1002/jms.4728 |
[4] |
Dietrich AM, Burlingame GA. 2020. A review: The challenge, consensus, and confusion of describing odors and tastes in drinking water. Science of The Total Environment 713:135061 doi: 10.1016/j.scitotenv.2019.135061 |
[5] |
Judet-Correia D, Bensoussan M, Charpentier C, Dantigny P. 2013. Influence of temperature, copper and CO2 on spore counts and geosmin production by Penicillium expansum. Australian Journal of Grape and Wine Research 19:81−86 doi: 10.1111/ajgw.12004 |
[6] |
Romano A, Navarini L, Lonzarich V, Bogialli S, Pastore P, et al. 2022. 2,4,6-Trichloroanisole off-flavor screening in green Coffea arabica by a novel vocus NO+ CI-MS method: A study on green coffee from different geographical origins. Journal of Agricultural and Food Chemistry 70:11412 doi: 10.1021/acs.jafc.2c03899 |
[7] |
Tempere S, Schaaper MH, Cuzange E, de Revel G, Sicard G. 2017. Masking of several olfactory notes by infra-threshold concentrations of 2,4,6-trichloroanisole. Chemosensory Perception 10:69−80 doi: 10.1007/s12078-017-9227-5 |
[8] |
Takeuchi H, Kato H, Kurahashi T. 2013. 2,4,6-Trichloroanisole is a potent suppressor of olfactory signal transduction. Proceeding of the National Academy of Sciences of the United States of America 110:16235−40 doi: 10.1073/pnas.1300764110 |
[9] |
Abhijith GR, Ostfeld A. 2021. Modeling the formation and propagation of 2, 4, 6-trichloroanisole, a dominant taste and odor compound, in Water Distribution Systems. Water 13:638 doi: 10.3390/w13050638 |
[10] |
Zhang K, Cao C, Zhou X, Zheng F, Sun Y, et al. 2018. Pilot investigation on formation of 2,4,6-trichloroanisole via microbial O-methylation of 2,4,6-trichlorophenol in drinking water distribution system: An insight into microbial mechanism. Water Research 131:11−21 doi: 10.1016/j.watres.2017.12.013 |
[11] |
Ge F, Zhu L, Chen H. 2006. Effects of pH on the chlorination process of phenols in drinking water. Journal of Hazardous Materials 133:99−105 doi: 10.1016/j.jhazmat.2005.09.062 |
[12] |
Zhang K, Zhou X, Zhang T, Mao M, Li L, et al. 2016. Kinetics and mechanisms of formation of earthy and musty odor compounds: Chloroanisoles during water chlorination. Chemosphere 163:366−72 doi: 10.1016/j.chemosphere.2016.08.051 |
[13] |
Zhang K, Luo Z, Zhang T, Mao M, Fu J. 2016. Study on formation of 2,4,6-trichloroanisole by microbial O-methylation of 2,4,6-trichlorophenol in lake water. Environmental Pollution 219:228−34 doi: 10.1016/j.envpol.2016.10.042 |
[14] |
Ghochlavi N, Aghapour AA, Khorsandi H. 2022. Biodegradation of 2,4,6 trichlorophenol by sequencing batch reactors (SBR) equipped with a rotating biological bed and operated in an anaerobic-aerobic condition. Frontiers in Environmental Science 10:2053 doi: 10.3389/fenvs.2022.1015790 |
[15] |
Zheng W, Su R, Lin X, Liu J. 2022. Nanochannel array modified three-dimensional graphene electrode for sensitive electrochemical detection of 2,4,6-trichlorophenol and prochloraz. Frontiers in Chemistry 10:954802 doi: 10.3389/fchem.2022.954802 |
[16] |
Li H, Li J, Hou C, Du S, Ren Y, et al. 2010. A sub-nanomole level electrochemical method for determination of prochloraz and its metabolites based on medical stone doped disposable electrode. Talanta 83:591−95 doi: 10.1016/j.talanta.2010.10.002 |
[17] |
Huff J. 2012. Long-term toxicology and carcinogenicity of 2,4,6-trichlorophenol. Chemosphere 89:521−25 doi: 10.1016/j.chemosphere.2012.05.015 |
[18] |
Tian F, Qiao C, Wang C, Pang T, Guo L, et al. 2022. Dissipation behavior of prochloraz and its metabolites in grape under open-field, storage and the wine-making process. Journal of Food Composition and Analysis 114:104846 doi: 10.1016/j.jfca.2022.104846 |
[19] |
Prak S, Gunata Z, Guiraud JP, Schorr-Galindo S. 2007. Fungal strains isolated from cork stoppers and the formation of 2,4,6-trichloroanisole involved in the cork taint of wine. Food Microbiology 24:271−80 doi: 10.1016/j.fm.2006.05.002 |
[20] |
Maggi L, Mazzoleni V, Fumi MD, Salinas MR. 2008. Transformation ability of fungi isolated from cork and grape to produce 2,4,6-trichloroanisole from 2,4,6-trichlorophenol. Food Additives & Contaminants: Part A 25:265−69 doi: 10.1080/02652030701522991 |
[21] |
Alvarez-Rodríguez ML, López-Ocaña L, López-Coronado JM, Rodríguez E, Martínez MJ, et al. 2002. Cork taint of wines: role of the filamentous fungi isolated from cork in the formation of 2,4,6-trichloroanisole by O-methylation of 2,4,6-trichlorophenol. Applied and Environmental Microbiology 68:5860−69 doi: 10.1128/AEM.68.12.5860-5869.2002 |
[22] |
Álvarez-Rodríguez ML, Belloch C, Villa M, Uruburu F, Larriba G, et al. 2003. Degradation of vanillic acid and production of guaiacol by microorganisms isolated from cork samples. FEMS Microbiology Letters 220:49−55 doi: 10.1016/S0378-1097(03)00053-3 |
[23] |
Endo M, Matsui C, Maeta N, Uehara Y, Matsuda R, et al. 2021. Growth characteristics of Aspergillus oryzae in the presence of 2,4,6-trichlorophenol. The Journal of General and Applied Microbiology 67:256−59 doi: 10.2323/jgam.2021.06.001 |
[24] |
Nyström A, Grimvall A, Krantz-Rüilcker C, Sävenhed R, Åkerstrand K. 1992. Drinking water off-flavour caused by 2,4,6-trichloroanisole. Water Science and Technology 25:241−49 doi: 10.2166/wst.1992.0058 |
[25] |
Zhou X, Zhang K, Zhang T, Yang Y, Ye M, et al. 2019. Formation of odorant haloanisoles and variation of microorganisms during microbial O-methylation in annular reactors equipped with different coupon materials. Science of the Total Environment 679:1−11 doi: 10.1016/j.scitotenv.2019.04.329 |
[26] |
Zhou X, Zhang K, Zhang T, Cen C, Pan R. 2021. Biotransformation of halophenols into earthy-musty haloanisoles: Investigation of dominant bacterial contributors in drinking water distribution systems. Journal of Hazardous Materials 403:123693 doi: 10.1016/j.jhazmat.2020.123693 |
[27] |
Bai X, Zhang T, Qu Z, Li H, Yang Z. 2017. Contribution of filamentous fungi to the musty odorant 2,4,6-trichloroanisole in water supply reservoirs and associated drinking water treatment plants. Chemosphere 182:223−30 doi: 10.1016/j.chemosphere.2017.04.138 |
[28] |
Zheng T, Ma YL, Li WS, Deng JX, Li H, et al. 2023. Trichoderma species from rhizosphere of Oxalis corymbose release volatile organic compounds inhibiting the seed germination and growth of Echinochloa colona. Arabian Journal of Chemistry 16:105274 doi: 10.1016/j.arabjc.2023.105274 |
[29] |
Hitfield FB, Ly Nguyen TH, Tindale CR. 1991. Effect of relative humidity and incubation time on the O-methylation of chlorophenols in fibreboard by Paecilomyces variotii. Journal of the Science of Food and Agriculture 55:19−26 doi: 10.1002/jsfa.2740550104 |
[30] |
Gee JM, Peel JL. 1974. Metabolism of 2,3,4,6 tetrachlorophenol by microorganisms from broiler house litter. Journal of General Microbiology 85:237−43 doi: 10.1099/00221287-85-2-237 |
[31] |
Coque JJR, Alvarez-Rodríguez ML, Larriba G. 2003. Characterization of an inducible chlorophenol O-methyltransferase from Trichoderma longibrachiatum involved in the formation of chloroanisoles and determination of its role in cork taint of wines. Applied and Environmental Microbiolog 69:5089−95 doi: 10.1128/AEM.69.9.5089-5095.2003 |
[32] |
Prat C, Ruiz-Rueda O, Trias R, Anticó E, Capone D, et al. 2009. Molecular fingerprinting by PCR-denaturing gradient gel electrophoresis reveals differences in the levels of microbial diversity for musty-earthy tainted corks. Applied and Environmental Microbiology 75:1922−1931 doi: 10.1128/AEM.02758-08 |
[33] |
Tang Y, Wu Z, Zhang Y, Wang C, Ma X, et al. 2023. Cultivation-dependent and cultivation-independent investigation of O-methylated pollutant-producing bacteria in three drinking water treatment plants. Water Research 231:119618 doi: 10.1016/j.watres.2023.119618 |
[34] |
Allard AS, Remberger M, Neilson AH. 1987. Bacterial O-methylation of halogen-substituted phenols. Applied and Environmental Microbiology 53:839−45 doi: 10.1128/aem.53.4.839-845.1987 |
[35] |
Azevedo J, Brandao E, Soares S, Oliveira J, Lopes P, et al. 2020. Polyphenolic characterization of nebbiolo red wines and their interaction with salivary proteins. Foods 9:1867 doi: 10.3390/foods9121867 |
[36] |
Azevedo J, Jesus M, Brandao E, Soares S, Oliveira J, et al. 2022. Interaction between salivary proteins and cork phenolic compounds able to migrate to wine model solutions. Food Chemistry 367:130607 doi: 10.1016/j.foodchem.2021.130607 |
[37] |
Azevedo J, Lopes P, Mateus N, de Freitas V. 2022. Cork, a natural choice to wine? Foods 11:2638 doi: 10.3390/foods11172638 |
[38] |
Monteiro S, Bundaleski N, Malheiro A, Cabral M, Teodoro OMND. 2022. Cross contamination of 2, 4, 6-trichloroanisole in cork stoppers. Journal of Agricultural and Food Chemistry 70:6747−54 doi: 10.1021/acs.jafc.2c02493 |
[39] |
Rebezov M, Saeed K, Khaliq A, Rahman SJU, Sameed N, et al. 2022. Application of electrolyzed water in the food industry: A review. Applied Sciences-Basel 12:6639 doi: 10.3390/app12136639 |
[40] |
Zhang WL, Cao JK, Jiang WB. 2021. Application of electrolyzed water in postharvest fruits and vegetables storage: A review. Trends in Food Science & Technology 114:599−607 doi: 10.1016/j.jpgs.2021.06.005 |
[41] |
Cravero F, Englezos V, Rantsiou K, Torchio F, Giacosa S, et al. 2018. Control of Brettanomyces bruxellensis on wine grapes by post-harvest treatments with electrolyzed water, ozonated water and gaseous ozone. Innovative Food Science & Emerging Technologies 47:309−16 doi: 10.1016/j.ifset.2018.03.017 |
[42] |
Giacosa S, Gabrielli M, Torchio F, Río Segade S, Grobas AMM, et al. 2019. Relationships among electrolyzed water postharvest treatments on winegrapes and chloroanisoles occurrence in wine. Food Research International 120:235−43 doi: 10.1016/j.foodres.2019.02.034 |
[43] |
Gabrielli M, Englezos V, Rolle L, Río Segade S, Giacosa S, et al. 2020. Chloroanisoles occurrence in wine from grapes subjected to electrolyzed water treatments in the vineyard. Food Research International 137:109704 doi: 10.1016/j.foodres.2020.109704 |
[44] |
Tarasov A, Jung RE. 2023. Is Airborne 2,4,6-Trichloroanisole (TCA) a threat for bottled wine? Australian Journal of Grape and Wine Research 2023:6637804 doi: 10.1155/2023/6637804 |
[45] |
Romano A, Capozzi V, Khomenko I, Biasioli F. 2023. Advances in the Application of Direct Injection Mass Spectrometry Techniques to the Analysis of Grape, Wine and Other Alcoholic Beverages. Molecules 28:7642 doi: 10.3390/molecules28227642 |
[46] |
Zhang J, Zhang A, Fan C, Li X, Cui Z, et al. 2022. Determination of multihalo- phenols and anisoles in wine by gas chromatography tandem mass spectrometry through online derivatization and head space solid phase Microextraction. Food Analytical Methods 15:3435−43 doi: 10.1007/s12161-022-02371-7 |
[47] |
Ruiz-Delgado A, Arrebola-Liébanas FJ, Romero-González R, López-Ruiz R, Garrido Frenich A. 2016. Headspace solid-phase microextraction coupled to gas chromatography-tandem mass spectrometry for the determination of haloanisoles in sparkling (cava and cider) and non-sparkling (wine) alcoholic beverages. Food Additives and Contaminants: Part A 33:1535−44 doi: 10.1080/19440049.2016.1229870 |
[48] |
Özhan D, Anli RE, Vural N, Bayram M. 2009. Determination of Chloroanisoles and Chlorophenols in Cork and Wine by using HS-SPME and GC-ECD Detection. Journal of the Institute of Brewing 115:71−77 doi: 10.1002/j.2050-0416.2009.tb00346.x |
[49] |
Karpas Z, Guamán AV, Calvo D, Pardo A, Marco S. 2012. The potential of ion mobility spectrometry (IMS) for detection of 2,4,6-trichloroanisole (2,4,6-TCA) in wine. Talanta 93:200−5 doi: 10.1016/j.talanta.2012.02.012 |
[50] |
Lichvanová Z, Ilbeigi V, Sabo M, Tabrizchi M, Matejčík S. 2014. Using corona discharge-ion mobility spectrometry for detection of 2,4,6-Trichloroanisole. Talanta 127:239−43 doi: 10.1016/j.talanta.2014.04.021 |
[51] |
Márquez-Sillero I, Aguilera-Herrador E, Cárdenas S, Valcárcel M. 2011. Determination of 2, 4, 6-tricholoroanisole in water and wine samples by ionic liquid-based single-drop microextraction and ion mobility spectrometry. Analytica Chimica Acta 702:199−204 doi: 10.1016/j.aca.2011.06.046 |
[52] |
Márquez-Sillero I, Cárdenas S, Valcárcel M. 2012. Headspace–multicapillary column–ion mobility spectrometry for the direct analysis of 2,4,6-trichloroanisole in wine and cork samples. Journal of Chromatography A 1265:149−54 doi: 10.1016/j.chroma.2012.09.087 |
[53] |
Jové P, Vives-Mestres M, De Nadal R, Verdum M. 2021. Development, optimization and validation of a sustainable and quantifiable methodology for the determination of 2,4,6-trichloroanisole, 2,3,4,6-tetrachloroanisole, 2,4,6-tribromoanisole, pentachloroanisole, 2-methylisoborneole and geosmin in air. Processes 9:1571 doi: 10.3390/pr9091571 |
[54] |
Meléndez F, Arroyo P, Gómez-Suárez J, Santos JP, Yuste FJ, et al. 2022. Detection of TCA in cork stoppers using an electronic nose. IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), Aveiro, Portugal, 2022. USA: IEEE. https://doi.org/10.1109/ISOEN54820.2022.9789615 |
[55] |
Santos JP, Sayago I, Sanjurjo JL, Perez-Coello MS, Díaz-Maroto MC. 2022. Rapid and non-destructive analysis of corky off-flavors in natural cork stoppers by a wireless and portable electronic nose. Sensors 22:4687 doi: 10.3390/s22134687 |
[56] |
Meléndez F, Arroyo P, Gómez-Suárez J, Palomeque-Mangut S, Suárez JI, et al. 2022. Portable electronic nose based on digital and analog chemical sensors for 2,4,6-trichloroanisole discrimination. Sensors 22:3453 doi: 10.3390/s22093453 |
[57] |
Peres AM, Freitas P, Dias LG, Sousa MEBC, Castro LM, et al. 2013. Cyclic voltammetry: A tool to quantify 2,4,6-trichloroanisole in aqueous samples from cork planks boiling industrial process. Talanta 117:438−44 doi: 10.1016/j.talanta.2013.09.039 |
[58] |
Sanvicens N, Sánchez-Baeza F, Marco MP. 2003. Immunochemical determination of 2,4,6-trichloroanisole as the responsible agent for the musty odor in foods. 1. Molecular modeling studies for antibody production. Journal of Agricultural and Food Chemistry 51:3924−31 doi: 10.1021/jf034003h |
[59] |
Moore E, Pravda M, and Guilbault GG. 2003. Development of a biosensor for the quantitative detection of 2, 4, 6-trichloroanisole using screen printed electrodes. Analytica Chimica Acta 484:15−24 doi: 10.1016/S0003-2670(03)00311-8 |
[60] |
Lausterer R, Sanvicens N, Marco MP, Hock B. 2003. Enzyme immunoassay for 2,4,6-trichloroanisole based on monoclonal antibodies. Analytical Letters 36:713−29 doi: 10.1081/AL-120018795 |
[61] |
Apostolou T, Pascual N, Marco MP, Moschos A, Petropoulos A, et al. 2014. Extraction-less, rapid assay for the direct detection of 2,4,6-trichloroanisole (TCA) in cork samples. Talanta 125:336−40 doi: 10.1016/j.talanta.2014.03.023 |
[62] |
Cappellin L, Lopez-Hilfiker FD, Pospisilova V, Ciotti L, Pastore P, et al. 2020. Thermal desorption-vocus enables online nondestructive quantification of 2,4,6-trichloroanisole in cork stoppers below the perception threshold. Analytical Chemistry 92:9823−29 |
[63] |
Damiano C, Intrieri D, Sonzini P, Rizzato S, Di Natale C, et al. 2022. Nickel (0) complexes as promising chemosensors for detecting the "cork taint" in wine. European Journal of Inorganic Chemistry 2022:e202101013 doi: 10.1002/ejic.202101013 |
[64] |
Lizarraga E, Irigoyen A, Belsue V, González-Peñas E. 2004. Determination of chloroanisole compounds in red wine by headspace solid-phase microextraction and gas chromatography-mass spectrometry. Journal of Chromatography A 1052:145−49 doi: 10.1016/j.chroma.2004.08.046 |
[65] |
Zalacain A, Alonso GL, Lorenzo C, Iñiguez M, Salinas MR. 2004. Stir bar sorptive extraction for the analysis of wine cork taint. Journal of Chromatography A 1033:173−178 doi: 10.1016/j.chroma.2003.12.059 |
[66] |
Campillo N, Viñas P, Cacho JI, Peñalver R, Hernández-Córdoba M. 2010. Evaluation of dispersive liquid-liquid microextraction for the simultaneous determination of chlorophenols and haloanisoles in wines and cork stoppers using gas chromatography-mass spectrometry. Journal of Chromatography A 1217:7323−30 doi: 10.1016/j.chroma.2010.09.058 |
[67] |
Bai X, Zhang T, Li H, Yang Z. 2016. Simultaneous dispersive liquid–liquid microextraction based on a low-density solvent and derivatization followed by gas chromatography for the simultaneous determination of chloroanisoles and the precursor 2,4,6-trichlorophenol in water samples. Journal of Separation Science 39:2146−55 doi: 10.1002/jssc.201600098 |
[68] |
Taylor MK, Young TM, Butzke CE, and Ebeler SE. 2000. Supercritical fluid extraction of 2, 4, 6-trichloroanisole from cork stoppers. Journal of Agricultural and Food Chemistry 48:2208−11 doi: 10.1021/jf991045q |
[69] |
Ezquerro O, Garrido-López A, Tena MT. 2006. Determination of 2,4,6-trichloroanisole and guaiacol in cork stoppers by pressurised fluid extraction and gas chromatography-mass spectrometry. Journal of Chromatography A 1102:18−24 doi: 10.1016/j.chroma.2005.10.023 |
[70] |
Callejón RM, Ubeda C, Ríos-Reina R, Morales, ML, Troncoso AM. 2016. Recent developments in the analysis of musty odour compounds in water and wine: A review. Journal of Chromatography A 1428:72−85 doi: 10.1016/j.chroma.2015.09.008 |
[71] |
Dong ZY, Lin YL, Zhang TY, Hu CY, Pan Y, et al. 2021. The formation, analysis, and control of chlor(am)ination-derived odor problems: A review. Water Research 203:117549 doi: 10.1016/j.watres.2021.117549 |
[72] |
Marsol-Vall A, Ainsa S, Lopez R, Ferreira V. 2022. Development and validation of a method for the analysis of halophenols and haloanisoles in cork bark macerates by stir bar sorptive extraction heart-cutting two-dimensional gas chromatography negative chemical ionization mass spectrometry. Journal of Chromatography A 1673:463186 doi: 10.1016/j.chroma.2022.463186 |
[73] |
Pizarro C, Sáenz-González C, Pérez-del-Notario N, González-Sáiz JM. 2011. Development of a dispersive liquid–liquid microextraction method for the simultaneous determination of the main compounds causing cork taint and Brett character in wines using gas chromatography–tandem mass spectrometry. Journal of Chromatography A 1218,:1576−84 doi: 10.1016/j.chroma.2011.01.055 |
[74] |
Goto S, Urase T, and Nakakura K. 2023. Novel and simple method for quantification of 2, 4, 6-trichlorophenol with microbial conversion to 2,4,6-trichloroanisole. Microorganisms 11:2133 doi: 10.3390/microorganisms11092133 |
[75] |
Wang C, Zou P, Zhang T, Li H, Yang Z. 2017. Simultaneous determination of haloanisoles and halophenols in water using in situ acylation combined with solid-phase microextraction with gas chromatography and mass spectrometry. Journal of Separation Science 40:514−23 doi: 10.1002/jssc.201600863 |
[76] |
Stranig S, Leitner E, Leis D, Siegmund B. 2024. Mouldy and musty off-flavour in garlic is caused by the presence of 2,4,6-trichloroanisole. Journal of Food Composition and Analysis 126:105936 doi: 10.1016/j.jfca.2023.105936 |
[77] |
Zhang N, Xu B, Qi F, Kumirska J. 2016. The occurrence of haloanisoles as an emerging odorant in municipal tap water of typical cities in China. Water Research 98:242−49 doi: 10.1016/j.watres.2016.04.023 |
[78] |
Vakinti M, Mela SM, Fernández E, Psillakis E. 2019. Room temperature and sensitive determination of haloanisoles in wine using vacuum-assisted headspace solid-phase microextraction. Journal of Chromatography A 1602:142−49 doi: 10.1016/j.chroma.2019.03.047 |
[79] |
González-Centeno MR, Tempère S, Teissedre PL, Chira K. 2021. Use of alimentary film for selective sorption of haloanisoles from contaminated red wine. Food Chemistry 350:128364 doi: 10.1016/j.foodchem.2020.128364 |
[80] |
Alañón ME, Alarcón M, Díaz-Maroto IJ, Pérez-Coello MS, Díaz-Maroto MC. 2021. Corky off-flavor compounds in cork planks at different storage times before processing. Influence on the quality of the final stoppers. Journal of the Science of Food Agriculture 101:4735−42 doi: 10.1002/jsfa.11119 |
[81] |
Cacho JI, Nicolás J, Viñas P, Campillo N, Hernández-Córdoba M. 2016. Control of halophenol and haloanisole concentration in wine cellar environments, wines, corks and wood staves using gas chromatography with mass spectrometry. Australian Journal of Grape and Wine Research 22:391−98 doi: 10.1111/ajgw.12231 |
[82] |
Cacho JI, Nicolás J, Viñas P, Campillo N, Hernández-Córdoba M. 2016. Direct sample introduction-gas chromatography-mass spectrometry for the determination of haloanisole compounds in cork stoppers. Journal of Chromatography A 1475:74−79 doi: 10.1016/j.chroma.2016.11.002 |
[83] |
Valdés O, Marican A, Avila-Salas F, Castro RI, Mirabal Y, et al. 2019. Simple approach for cleaning up 2,4,6-trichloroanisole from alcoholic-beverage-reconstituted solutions using polymeric materials. Australian Journal of Grape and Wine Research 25:327−37 doi: 10.1111/ajgw.12396 |
[84] |
Cosme F, Gomes S, Vilela A, Filipe-Ribeiro L, Nunes FM. 2022. Air-depleted and solvent-impregnated cork powder as a new natural and sustainable fining agent for removal of 2, 4, 6-trichloroanisole (TCA) from red wines. Molecules 27:4614 doi: 10.3390/molecules27144614 |
[85] |
Garde-Cerdán T, Zalacain A, Lorenzo C, Alonso JL, Salinas MR. 2008. Molecularly imprinted polymer-assisted simple clean-up of 2,4,6-trichloroanisole and ethylphenols from aged red wines. American Journal of Enology and Viticulture 59:396−400 doi: 10.5344/ajev.2008.59.4.396 |
[86] |
Philipp C, Sari S, Brandes W, Nauer S, Patzl-Fischerleitner E, et al. 2022. Reduction in off-flavors in wine using special filter layers with integrated zeolites and the effect on the volatile profile of Austrian wines. Applied Sciences 12:4343 doi: 10.3390/app12094343 |
[87] |
Guedes P, Mateus EP, Fernandes JP, Ribeiro AB. 2019. Electro-technologies for the removal of 2, 4, 6-trichloroanisole from naturally contaminated cork discs: Reactor design and proof of concept. Chemical Engineering Journal 361:80−88 doi: 10.1016/j.cej.2018.12.040 |
[88] |
Recio E, Álvarez-Rodríguez ML, Rumbero A, Garzón E, Coque JJR. 2011. Destruction of chloroanisoles by using a hydrogen peroxide activated method and its application to remove chloroanisoles from cork stoppers. Journal of Agricultural and Food Chemistry 59:12589−97 doi: 10.1021/jf2035753 |
[89] |
Vlachos P, Stathatos E, Lyberatos G, Lianos P. 2008. Gas-phase photocatalytic degradation of 2,4,6-trichloroanisole in the presence of a nanocrystalline Titania film. Applications to the treatment of cork stoppers. Catalysis Communications 9:1987−90 doi: 10.1016/j.catcom.2008.03.031 |
[90] |
Sainz-García A, González-Marcos A, Múgica-Vidal R, Muro-Fraguas I, Gallarta-González F, et al. 2023. Wine corks decontamination using plasma activated water. Current Research in Food Science 7:100639 doi: 10.1016/j.crfs.2023.100639 |
[91] |
Fang L, Hallam D, Bermúdez R. 2016. Experimental studies on removal of airborne haloanisoles by non-thermal plasma air purifiers. Energy and Buildings 130:238−43 doi: 10.1016/j.enbuild.2016.08.035 |