[1] |
Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, et al. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75(1):3−35 doi: 10.1890/04-0922 |
[2] |
Hejda M, Pyšek P, Jarošík V. 2009. Impact of invasive plants on the species richness, diversity and composition of invaded communities. Journal of Ecology 97(3):393−403 doi: 10.1111/j.1365-2745.2009.01480.x |
[3] |
Pyšek P, Jarošík V, Hulme PE, Pergl J, Hejda M, et al. 2012. A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species' traits and environment. Global Change Biology 18(5):1725−37 doi: 10.1111/j.1365-2486.2011.02636.x |
[4] |
Blackburn TM, Essl F, Evans T, Hulme PE, Jeschke JM, et al. 2014. A unified classification of alien species based on the magnitude of their environmental impacts. PLoS Biology 12(5):e1001850 doi: 10.1371/journal.pbio.1001850 |
[5] |
Jeschke JM, Bacher S, Blackburn TM, Dick JTA, Essl F, et al. 2014. Defining the impact of non-native species. Conservation Biology 28(5):1188−94 doi: 10.1111/cobi.12299 |
[6] |
Kumschick S, Bacher S, Evans T, Marková Z, Pergl J, et al. 2015. Comparing impacts of alien plants and animals in Europe using a standard scoring system. Journal of Applied Ecology 52(3):552−61 doi: 10.1111/1365-2664.12427 |
[7] |
Weidlich EWA, Flórido FG, Sorrini TB, Brancalion PH. 2020. Controlling invasive plant species in ecological restoration: A global review. Journal of Applied Ecology 57(9):1806−17 doi: 10.1111/1365-2664.13656 |
[8] |
D'Antonio CM, August-Schmidt E, Fernandez-Going B. 2016. Invasive species and restoration challenges. In Foundations of restoration ecology, eds. Palmer MA, Zedler JB, Falk DA. Washington, D.C.: Island Press. pp. 216–44. https://doi.org/10.5822/978-1-61091-698-1_8 |
[9] |
Arthur GD, Naidoo KK, Coopoosamy RM. 2012. Bidens pilosa L. : Agricultural and pharmaceutical importance. Journal of Medicinal Plants Research 6(17):3282−81 doi: 10.5897/JMPR12.195 |
[10] |
Zungsontiporn S. 2007. Some characteristics of Bidens pilosa L. var. radiata Scheff., a new invasive species in Thailand. Proceeding of the 21st Asian Pacific Weed Science Society (APWSS) Conference, 2-6 October 2007, Peradeniya, Sri Lanka. Sri Lanka: Asian Pacific Weed Science Society. |
[11] |
Guatimosim E, Pinto HJ, Pereira OL, Fuga CAG, Vieira BS, et al. 2015. Pathogenic mycobiota of the weeds Bidens pilosa and Bidens subalternans. Tropical Plant Pathology 40:298−317 doi: 10.1007/s40858-015-0040-x |
[12] |
Zhang F, Li Q, Yerger EH, Chen X, Shi Q, et al. 2018. AM fungi facilitate the competitive growth of two invasive plant species, Ambrosia artemisiifolia and Bidens pilosa. Mycorrhiza 28:703−15 doi: 10.1007/s00572-018-0866-4 |
[13] |
Li J, Jeewon R, Mortimer PE, Doilom M, Phookamsak R, et al. 2020. Multigene phylogeny and taxonomy of Dendryphion hydei and Torula hydei spp. nov. from herbaceous litter in northern Thailand. PloS One 15(2):e0228067 doi: 10.1371/journal.pone.0228067 |
[14] |
Abdou R, Scherlach K, Dahse HM, Sattler I, Hertweck C. 2010. Botryorhodines A−D, antifungal and cytotoxic depsidones from Botryosphaeria rhodina, an endophyte of the medicinal plant Bidens pilosa. Phytochemistry 71:110−16 doi: 10.1016/j.phytochem.2009.09.024 |
[15] |
Munk A. 1953. The system of the Pyrenomycetes: A contribution to a natural classification of the group Sphaeriales sensu Lindau. Dansk Botanisk Arkiv 15:1−163 |
[16] |
Wijayawardene NN, Hyde KD, Dai DQ, Sánchez-García M, Goto BT, et al. 2022. Outline of Fungi and fungus-like taxa–2021. Mycosphere 13(1):53−453 doi: 10.5943/mycosphere/13/1/2 |
[17] |
Mapook A, Hyde KD, McKenzie EHC, Jones EBG, Bhat DJ, et al. 2020. Taxonomic and phylogenetic contributions to fungi associated with the invasive weed Chromolaena odorata (Siam weed). Fungal Diversity 101:1−175 doi: 10.1007/s13225-020-00444-8 |
[18] |
Samarakoon BC, Wanasinghe DN, Samarakoon MC, Phookamsak R, McKenzie EHC, et al. 2020a. Multi-gene phylogenetic evidence suggests Dictyoarthrinium belongs in Didymosphaeriaceae (Pleosporales, Dothideomycetes) and Dictyoarthrinium musae sp. nov. on Musa from Thailand. MycoKeys 71:101−18 doi: 10.3897/mycokeys.71.55493 |
[19] |
Samarakoon BC, Phookamsak R, Wanasinghe DN, Chomnunti P, Hyde KD, et al. 2020b. Taxonomy and phylogenetic appraisal of Spegazzinia musae sp. nov. and S. deightonii (Didymosphaeriaceae, Pleosporales) on Musaceae from Thailand. MycoKeys 70:19−37 doi: 10.3897/mycokeys.70.52043 |
[20] |
Yuan Z, Druzhinina IS, Wang X, Zhang X, Peng L, et al. 2020. Insight into a highly polymorphic endophyte isolated from the roots of the halophytic seepweed Suaeda salsa: Laburnicola rhizohalophila sp. nov. (Didymosphaeriaceae, Pleosporales). Fungal Biology 124:327−37 doi: 10.1016/j.funbio.2019.10.001 |
[21] |
Dissanayake LS, Wijayawardene NN, Samarakoon MC, Hyde KD, Kang JC. 2021. The taxonomy and phylogeny of Austropleospora ochracea sp. nov. (Didymosphaeriaceae) from Guizhou, China. Phytotaxa 491:217−29 doi: 10.11646/phytotaxa.491.3.2 |
[22] |
Wong Chin JM, Puchooa D, Bahorun T, Jeewon R. 2021. Molecular characterization of marine fungi associated with Haliclona sp. (sponge) and Turbinaria conoides and Sargassum portierianum (brown algae). Proc. of the National Academy of Sciences, India Section B: Biological Sciences 91:643−56 doi: 10.1007/s40011-021-01229-y |
[23] |
Suwannarach N, Kumla J, Lumyong S. 2021. Spegazzinia camelliae sp. nov. (Didymosphaeriaceae, Pleosprales), a new endophytic fungus from northern Thailand. Phytotaxa 483:117−28 doi: 10.11646/phytotaxa.483.2.4 |
[24] |
Sun YR, Zhang JY, Hyde KD, Wang Y, Jayawardena RS. 2023. Morphology and phylogeny reveal three Montagnula species from China and Thailand. Plants 12(4):738 doi: 10.3390/plants12040738 |
[25] |
Index Fungorum. www.indexfungorum.org (Accessed on December 2023). |
[26] |
Species Fungorum 2023. www.indexfungorum.org/names/Names.asp (Accessed on December 2023). |
[27] |
Ren G, Wanasinghe DN, de Farias ARG, Hyde KD, Yasanthika E, et al. 2022. Taxonomic novelties of woody litter fungi (Didymosphaeriaceae, Pleosporales) from the Greater Mekong Subregion. Biology 11(11):1660 doi: 10.3390/biology11111660 |
[28] |
Jayasiri SC, Hyde KD, Jones EBG, McKenzie EHC, Jeewon R, et al. 2019. Diversity, morphology and molecular phylogeny of Dothideomycetes on decaying wild seed pods and fruits. Mycosphere 10:1−186 doi: 10.5943/mycosphere/10/1/1 |
[29] |
Phukhamsakda C, McKenzie EHC, Phillips AJL, Gareth Jones EB, Jayarama Bhat D, et al. 2020. Microfungi associated with Clematis (Ranunculaceae) with an integrated approach to delimiting species boundaries. Fungal Diversity 102:1−203 doi: 10.1007/s13225-020-00448-4 |
[30] |
Tian XG, Bao DF, Karunarathna SC, Jayawardena RS, Hyde KD, Bhat DJ, et al. 2024. Taxonomy and phylogeny of ascomycetes associated with selected economically important monocotyledons in China and Thailand. Mycosphere 15:1−274 doi: 10.5943/mycosphere/15/1/1 |
[31] |
Senanayake IC, Rathnayaka AR, Marasinghe DS, Calabon MS, Gentekaki E, et al. 2020. Morphological approaches in studying fungi: Collection, examination, isolation, sporulation and preservation. Mycosphere 11:2678−754 doi: 10.5943/mycosphere/11/1/20 |
[32] |
Jayasiri SC, Hyde KD, Ariyawansa HA, Bhat J, Buyck B, et al. 2015. The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Diversity 74:3−18 doi: 10.1007/s13225-015-0351-8 |
[33] |
Chaiwan N, Gomdola D, Wang S, Monkai J, Tibpromma S, et al. 2021. https://gmsmicrofungi.org: An online database providing updated information of microfungi in the Greater Mekong Subregion. Mycosphere 12:1513−26 doi: 10.5943/mycosphere/12/1/19 |
[34] |
Mapook A, Boonmee S, Ariyawansa HA, Tibpromma S, Campesori E, et al. 2016. Taxonomic and phylogenetic placement of Nodulosphaeria. Mycological Progress 15:34 doi: 10.1007/s11557-016-1176-x |
[35] |
Vilgalys R, Hester M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172:4238−46 doi: 10.1128/jb.172.8.4238-4246.1990 |
[36] |
White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR protocols: a guide to methods and applications, eds. Innis MA, Gelfand DH, Sninsky JJ, White TJ. London, UK: Academic Press. pp. 315–22. https://doi.org/10.1016/B978-0-12-372180-8.50042-1 |
[37] |
Rehner S. 2001. Primers for Elongation Factor 1–alpha (EF1–alpha). Insect Biocontrol Laboratory: USDA, ARS, PSI. |
[38] |
Liu YJ, Whelen S, Hall BD. 1999. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Molecular Biology and Evolution 16:1799−808 doi: 10.1093/oxfordjournals.molbev.a026092 |
[39] |
Wijesinghe SN, Wanasinghe DN, Maharachchikumbura SSN, Wang Y, Al-Sadi AM, et al. 2020. Bimuria omanensis sp. nov. (Didymosphaeriaceae, Pleosporales) from Oman. Phytotaxa 449(2):97−108 doi: 10.11646/phytotaxa.449.2.1 |
[40] |
Vu D, Groenewald M, De Vries M, Gehrmann T, Stielow B, et al. 2019. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in mycology 92(1):135−54 doi: 10.1016/j.simyco.2018.05.001 |
[41] |
Ariyawansa HA, Tanaka K, Thambugala KM, Phookamsak R, Tian Q, et al. 2014. A molecular phylogenetic reappraisal of the Didymosphaeriaceae (= Montagnulaceae). Fungal Diversity 68:69−104 doi: 10.1007/s13225-014-0305-6 |
[42] |
Alidadi A, Javan-Nikkhah M, Kowsari M, Karami S, Rastaghi ME. 2018. Some species of fungi associated with declined Persian oak trees in Ilam province with emphasis on new records to mycobiota of Iran. Rostaniha 19:75−91 doi: 10.22092/botany.2019.122177.1105 |
[43] |
Lumbsch HT, Lindemuth R. 2001. Major lineages of Dothideomycetes (Ascomycota) inferred from SSU and LSU rDNA sequences. Mycological Research 105(8):901−8 doi: 10.1016/S0953-7562(08)61945-0 |
[44] |
Tennakoon DS, Thambugala KM, de Silva NI, Suwannarach N, Lumyong S. 2022. A taxonomic assessment of novel and remarkable fungal species in Didymosphaeriaceae (Pleosporales, Dothideomycetes) from plant litter. Frontiers in Microbiology 13:1016285 doi: 10.3389/fmicb.2022.1016285 |
[45] |
Crous PW, Summerell BA, Shivas RG, Burgess TI, Decock CA. et al. 2012. Fungal Planet description sheets: 107–127. Persoonia - Molecular Phylogeny and Evolution of Fungi 28(1):138−82 doi: 10.3767/003158512X652633 |
[46] |
Tanaka K, Hirayama K, Yonezawa H, Sato G, Toriyabe A, et al. 2015. Revision of the Massarineae (Pleosporales, Dothideomycetes). Studies in Mycology 82:75−136 doi: 10.1016/j.simyco.2015.10.002 |
[47] |
Swindell SR, Plasterer TN. 1997. SEQMAN. In Sequence data analysis guidebook, ed. Swindell SR. Totowa, NJ: Springer. pp. 75–89. https://doi.org/10.1385/0-89603-358-9:75 |
[48] |
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30(12):2725−29 doi: 10.1093/molbev/mst197 |
[49] |
Rannala B, Yang Z. 1996. Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. Journal of Molecular Evolution 43:304−11 doi: 10.1007/BF02338839 |
[50] |
Lemmon AR, Brown JM, Stanger-Hall K, Lemmon EM. 2009. The effect of ambiguous data on phylogenetic estimates obtained by maximum likelihood and Bayesian inference. Systematic Biology 58:130−45 doi: 10.1093/sysbio/syp017 |
[51] |
Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. 2010 Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010. USA: IEEE. pp. 1–8. https://doi.org/10.1109/GCE.2010.5676129. |
[52] |
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312−13 doi: 10.1093/bioinformatics/btu033 |
[53] |
Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61:539−42 doi: 10.1093/sysbio/sys029 |
[54] |
Zhaxybayeva O, Gogarten JP. 2002. Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. BMC Genomics 3:1−15 doi: 10.1186/1471-2164-3-4 |
[55] |
Rambaut A. 2012. FigTree v. 1.40. University of Oxford. |
[56] |
Alam ST, Le TAN, Park JS, Kwon HC, Kang K. 2019. Antimicrobial biophotonic treatment of ampicillin-resistant Pseudomonas aeruginosa with hypericin and ampicillin cotreatment followed by orange light. Pharmaceutics 11:641 doi: 10.3390/pharmaceutics11120641 |
[57] |
Balouiri M, Sadiki M, Ibnsouda SK. 2016. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis 6:71−79 doi: 10.1016/j.jpha.2015.11.005 |