[1]

Ali MS, Baek KH. 2020. Jasmonic acid signaling pathway in response to abiotic stresses in plants. International Journal of Molecular Sciences 21:621

doi: 10.3390/ijms21020621
[2]

Lamers J, van der Meer T, Testerink C. 2020. How plants sense and respond to stressful environments. Plant Physiology 182:1624−35

doi: 10.1104/pp.19.01464
[3]

Wolters H, Jürgens G. 2009. Survival of the flexible: hormonal growth control and adaptation in plant development. Nature Reviews Genetics 10:305−17

doi: 10.1038/nrg2558
[4]

Gong Z. 2021. Plant abiotic stress: new insights into the factors that activate and modulate plant responses. Journal of Integrative Plant Biology 63:429−30

doi: 10.1111/jipb.13079
[5]

Lee S, Shin K, Lee I, Song HR, Noh YS, et al. 2013. Genetic identification of a novel locus, ACCELERATED FLOWERING 1 that controls chromatin modification associated with histone H3 lysine 27 trimethylation in Arabidopsis thaliana. Plant Science 208:20−27

doi: 10.1016/j.plantsci.2013.03.009
[6]

Boss PK, Bastow RM, Mylne JS, Dean C. 2004. Multiple pathways in the decision to flower: enabling, promoting, and resetting. The Plant Cell 16:S18−S31

doi: 10.1105/tpc.015958
[7]

Blümel M, Dally N, Jung C. 2015. Flowering time regulation in crops—what did we learn from Arabidopsis? Current Opinion in Biotechnology 32:121−29

doi: 10.1016/j.copbio.2014.11.023
[8]

Wada KC, Takeno K. 2010. Stress-induced flowering. Plant Signaling & Behavior 5:944−47

doi: 10.4161/psb.5.8.11826
[9]

Mouradov A, Cremer F, Coupland G. 2002. Control of flowering time: interacting pathways as a basis for diversity. The Plant Cell 14:S111−S130

doi: 10.1105/tpc.001362
[10]

Zhang M, Zhu J, Wang L, Xu M. 2016. Progress of stress-induced flowering in plants. Chinese Journal of Biotechnology 32:1301−08

doi: 10.13345/j.cjb.160012
[11]

Takeno K. 2016. Stress-induced flowering: the third category of flowering response. Journal of Experimental Botany 67:4925−34

doi: 10.1093/jxb/erw272
[12]

Cho LH, Yoon J, An G. 2017. The control of flowering time by environmental factors. The Plant Journal 90:708−19

doi: 10.1111/tpj.13461
[13]

Takeno K. 2012. Stress-induced flowering. In Abiotic stress responses in plants, eds Ahmad P, Prasad M. New York, NY: Springer. pp. 331−45. https://doi.org/10.1007/978-1-4614-0634-1_17

[14]

Ventura Y, Eshel A, Pasternak D, Sagi M. 2015. The development of halophyte-based agriculture: past and present. Annals of Botany 115:529−40

doi: 10.1093/aob/mcu173
[15]

Mahajan S, Tuteja N. 2005. Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics 444:139−58

doi: 10.1016/j.abb.2005.10.018
[16]

Tuteja N. 2007. Mechanisms of high salinity tolerance in plants. Methods in Enzymology 428:419−38

doi: 10.1016/S0076-6879(07)28024-3
[17]

Munns R, Gilliham M. 2015. Salinity tolerance of crops – what is the cost? New Phytologist 208:668−73

doi: 10.1111/nph.13519
[18]

Sharma R, Wungrampha S, Singh V, Pareek A, Sharma MK. 2016. Halophytes as bioenergy crops. Frontiers in Plant Science 7:1372

doi: 10.3389/fpls.2016.01372
[19]

Li K, Wang Y, Han C, Zhang W, Jia H, et al. 2007. GA signaling and CO/FT regulatory module mediate salt-induced late flowering in Arabidopsis thaliana. Plant Growth Regulation 53:195−206

doi: 10.1007/s10725-007-9218-7
[20]

Zhao S, Zhang Q, Liu M, Zhou H, Ma C, et al. 2021. Regulation of plant responses to salt stress. International Journal of Molecular Sciences 22:4609

doi: 10.3390/ijms22094609
[21]

Zhu JK. 2002. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology 53:247−73

doi: 10.1146/annurev.arplant.53.091401.143329
[22]

Chen Y, Hoehenwarter W. 2015. Changes in the phosphoproteome and metabolome link early signaling events to rearrangement of photosynthesis and central metabolism in salinity and oxidative stress response in Arabidopsis. Plant Physiology 169:3021−33

doi: 10.1104/pp.15.01486
[23]

Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, et al. 2017. Plant responses to salt stress: adaptive mechanisms. Agronomy 7:18

doi: 10.3390/agronomy7010018
[24]

Shumilina J, Kusnetsova A, Tsarev A, Janse van Rensburg HC, Medvedev S, et al. 2019. Glycation of plant proteins: regulatory roles and interplay with sugar signalling? International Journal of Molecular Sciences 20:2366

doi: 10.3390/ijms20092366
[25]

Park HJ, Kim WY, Yun DJ. 2013. A role for GIGANTEA: keeping the balance between flowering and salinity stress tolerance. Plant Signaling & Behavior 8:e24820

doi: 10.4161/psb.24820
[26]

Kim SG, Kim SY, Park CM. 2007. A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta 226:647−54

doi: 10.1007/s00425-007-0513-3
[27]

Julien KK, Abdou MA, Armel CGM, Françoise AK, Eliane K, et al. 2019. Effect of salt stress on flowering, fructification and fruit nutrients concentration in a local cultivar of chili pepper (Capsicum frutescens L.). International Journal of Plant Physiology and Biochemistry 11:1−7

doi: 10.5897/IJPPB2019.0284
[28]

Pushpavalli R, Quealy J, Colmer TD, Turner NC, Siddique KHM, et al. 2016. Salt stress delayed flowering and reduced reproductive success of chickpea (Cicer arietinum L.), a response associated with Na+ accumulation in leaves. Journal of Agronomy and Crop Science 202:125−38

doi: 10.1111/jac.12128
[29]

Sharif I, Aleem S, Farooq J, Rizwan M, Younas A, et al. 2019. Salinity stress in cotton: effects, mechanism of tolerance and its management strategies. Physiology and Molecular Biology of Plants 25:807−20

doi: 10.1007/s12298-019-00676-2
[30]

Zapryanova N, Atanassova B. 2009. Effects of salt stress on growth and flowering of ornamental annual species. Biotechnology & Biotechnological Equipment 23:177−79

doi: 10.1080/13102818.2009.10818394
[31]

Van Zandt PA, Mopper S. 2002. Delayed and carryover effects of salinity on flowering in Iris hexagona (Iridaceae). American Journal of Botany 89:1847−51

doi: 10.3732/ajb.89.11.1847
[32]

Abdullah Z, Khan MA, Flowers TJ. 2002. Causes of sterility in rice under salinity stress. In Prospects for saline agriculture, eds Ahmad R, Malik KA. Dordrecht: Springer. pp. 177–87. https://doi.org/10.1007/978-94-017-0067-2_19

[33]

Komeda Y. 2004. Genetic regulation of time to flower in Arabidopsis thaliana. Annual Review of Plant Biology 55:521−35

doi: 10.1146/annurev.arplant.55.031903.141644
[34]

Quiroz S, Yustis JC, Chávez-Hernández EC, Martínez T, de la Paz Sanchez M, et al. 2021. Beyond the genetic pathways, flowering regulation complexity in Arabidopsis thaliana. International Journal of Molecular Sciences 22:5716

doi: 10.3390/ijms22115716
[35]

Samach A, Lotan H. 2007. The transition to flowering in tomato. Plant Biotechnology 24:71−82

doi: 10.5511/plantbiotechnology.24.71
[36]

Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM. 1992. LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843−59

doi: 10.1016/0092-8674(92)90295-N
[37]

Blázquez MA, Soowal LN, Lee I, Weigel D. 1997. LEAFY expression and flower initiation in Arabidopsis. Development 124:3835−44

doi: 10.1242/dev.124.19.3835
[38]

Molinero-Rosales N, Jamilena M, Zurita S, Gómez P, Capel J, et al. 1999. FALSIFLORA, the tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem identity. The Plant Journal 20:685−93

doi: 10.1046/j.1365-313X.1999.00641.x
[39]

Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, et al. 2007. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030−33

doi: 10.1126/science.1141752
[40]

Huang T, Böhlenius H, Eriksson S, Parcy F, Nilsson O. 2005. The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309:1694−96

doi: 10.1126/science.1117768
[41]

Wickland DP, Hanzawa Y. 2015. The FLOWERING LOCUS T/TERMINAL FLOWER 1 gene family: functional evolution and molecular mechanisms. Molecular Plant 8:983−97

doi: 10.1016/j.molp.2015.01.007
[42]

Mizoguchi T, Niinuma K, Yoshida R. 2007. Day-neutral response of photoperiodic flowering in tomatoes: possible implications based on recent molecular genetics of Arabidopsis and rice. Plant Biotechnology 24:83−86

doi: 10.5511/plantbiotechnology.24.83
[43]

Molinero-Rosales N, Latorre A, Jamilena M, Lozano R. 2004. SINGLE FLOWER TRUSS regulates the transition and maintenance of flowering in tomato. Planta 218:427−34

doi: 10.1007/s00425-003-1109-1
[44]

Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, et al. 2006. The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proceedings of the National Academy of Sciences of the United States of America 103:6398−403

doi: 10.1073/pnas.0601620103
[45]

Yamada M, Takeno K. 2014. Stress and salicylic acid induce the expression of PnFT2 in the regulation of the stress-induced flowering of Pharbitis nil. Journal of Plant Physiology 171:205−12

doi: 10.1016/j.jplph.2013.07.005
[46]

Sablowski R, Carnier Dornelas M. 2014. Interplay between cell growth and cell cycle in plants. Journal of Experimental Botany 65:2703−14

doi: 10.1093/jxb/ert354
[47]

Francis D. 1992. The cell cycle in plant development. New Phytologist 122:1−20

doi: 10.1111/j.1469-8137.1992.tb00048.x
[48]

Dewitte W, Murray JAH. 2003. The plant cell cycle. Annual Review of Plant Biology 54:235−64

doi: 10.1146/annurev.arplant.54.031902.134836
[49]

Novák B, Sible JC, Tyson JJ. 2003. Checkpoints in the cell cycle. Encyclopedia of Life Sciences

doi: 10.1038/npg.els.0001355
[50]

Kaufmann WK, Paules RS. 1996. DNA damage and cell cycle checkpoints. The FASEB Journal 10:238−47

doi: 10.1096/fasebj.10.2.8641557
[51]

West G, Inzé D, Beemster GTS. 2004. Cell cycle modulation in the response of the primary root of Arabidopsis to salt stress. Plant Physiology 135:1050−58

doi: 10.1104/pp.104.040022
[52]

Okumura T, Nomoto Y, Kobayashi K, Suzuki T, Takatsuka H, et al. 2021. MYB3R-mediated active repression of cell cycle and growth under salt stress in Arabidopsis thaliana. Journal of Plant Research 134:261−77

doi: 10.1007/s10265-020-01250-8
[53]

Zhang P, Dai Y, Masateru S, Natsumi M, Kengo I. 2017. Interactions of salinity stress and flower thinning on tomato growth, yield, and water use efficiency. Communications in Soil Science and Plant Analysis 48:2601−11

doi: 10.1080/00103624.2017.1411508
[54]

Khan W, Prithiviraj B, Smith DL. 2003. Photosynthetic responses of corn and soybean to foliar application of salicylates. Journal of Plant Physiology 160:485−92

doi: 10.1078/0176-1617-00865
[55]

Zhang J, Zhang P, Wang G, Chen C, Wang X, et al. 2023. Determination of nuclear DNA ploidy distribution in the mesocarp of tomato red ripe fruit using a flow cytometer. Vegetable Research 3:8

doi: 10.48130/VR-2023-0008
[56]

Liu Y, Schiff M, Dinesh-Kumar SP. 2002. Virus-induced gene silencing in tomato. The Plant Journal 31:777−86

doi: 10.1046/j.1365-313X.2002.01394.x
[57]

Fernandez-Pozo N, Rosli HG, Martin GB, Mueller LA. 2015. The SGN VIGS tool: user-friendly software to design virus-induced gene silencing (VIGS) constructs for functional genomics. Molecular Plant 8:486−88

doi: 10.1016/j.molp.2014.11.024
[58]

Lee J, Lee I. 2010. Regulation and function of SOC1, a flowering pathway integrator. Journal of Experimental Botany 61:2247−54

doi: 10.1093/jxb/erq098
[59]

Shimotohno A, Aki SS, Takahashi N, Umeda M. 2021. Regulation of the plant cell cycle in response to hormones and the environment. Annual Review of Plant Biology 72:273−96

doi: 10.1146/annurev-arplant-080720-103739
[60]

Qi F, Zhang F. 2019. Cell cycle regulation in the plant response to stress. Frontiers in Plant Science 10:1765

doi: 10.3389/fpls.2019.01765
[61]

Burssens S, Himanen K, Van de Cotte B, Beeckman T, Van Montagu M, et al. 2000. Expression of cell cycle regulatory genes and morphological alterations in response to salt stress in Arabidopsis thaliana. Planta 211:632−40

doi: 10.1007/s004250000334
[62]

Weimer AK, Biedermann S, Harashima H, Roodbarkelari F, Takahashi N, et al. 2016. The plant-specific CDKB1-CYCB1 complex mediates homologous recombination repair in Arabidopsis. The EMBO Journal 35:2068−86

doi: 10.15252/embj.201593083
[63]

Ortega-Amaro MA, Rodríguez-Kessler M, Becerra-Flora A, Jiménez-Bremont JF. 2012. Modulation of Arabidopsis CYCB1 expression patterns by polyamines and salt stress. Acta Physiologiae Plantarum 34:461−69

doi: 10.1007/s11738-011-0842-5
[64]

Khurana JP, Cleland CF. 1992. Role of salicylic acid and benzoic acid in flowering of a photoperiod-insensitive strain, Lemna paucicostata LP6. Plant Physiology 100:1541−46

doi: 10.1104/pp.100.3.1541
[65]

Shavrukov Y, Kurishbayev A, Jatayev S, Shvidchenko V, Zotova L, et al. 2017. Early flowering as a drought escape mechanism in plants: how can it aid wheat production? Frontiers in Plant Science 8:1950

doi: 10.3389/fpls.2017.01950
[66]

Xu M, Zhang L, Li W, Hu X, Wang M, et al. 2014. Stress-induced early flowering is mediated by miR169 in Arabidopsis thaliana. Journal of Experimental Botany 65:89−101

doi: 10.1093/jxb/ert353