[1]

Lin L, Allemekinders H, Dansby A, Campbell L, Durance-Tod S, et al. 2013. Evidence of health benefits of canola oil. Nutrition Reviews 71:370−85

doi: 10.1111/nure.12033
[2]

Xu CC, Shanklin J. 2016. Triacylglycerol metabolism, function, and accumulation in plant vegetative tissues. Annual Review of Plant Biology 67:179−206

doi: 10.1146/annurev-arplant-043015-111641
[3]

Lepiniec L, Devic M, Roscoe TJ, Bouyer D, Zhou DX, et al. 2018. Molecular and epigenetic regulations and functions of the LAFL transcriptional regulators that control seed development. Plant Reproduction 31:291−307

doi: 10.1007/s00497-018-0337-2
[4]

Zhao H, Wu D, Kong F, Lin K, Zhang H, et al. 2017. The Arabidopsis thaliana nuclear factor Y transcription factors. Frontiers in Plant Science 7:2045

doi: 10.3389/fpls.2016.02045
[5]

Mu J, Tan H, Zheng Q, Fu F, Liang Y, et al. 2008. LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis. Plant Physiology 148:1042−54

doi: 10.1104/pp.108.126342
[6]

Tan H, Yang X, Zhang F, Qu C, Mu J, et al. 2011. Enhanced seed oil production in Canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Plant Physiology 156:1577−88

doi: 10.1104/pp.111.175000
[7]

Yan G, Yu P, Tian X, Guo L, Tu J, et al. 2021. DELLA proteins BnaA6. RGA and BnaC7. RGA negatively regulate fatty acid biosynthesis by interacting with BnaLEC1s in Brassica napus. Plant Biotechnology Journal 19:2011−26

doi: 10.1111/pbi.13628
[8]

Pelletier JM, Kwong RW, Park S, Le BH, Baden R, et al. 2017. LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development. Proceedings of the National Academy of Sciences of the United States of America 114:E6710−E6719

doi: 10.1073/pnas.1707957114
[9]

Hu Y, Zhou L, Huang M, He X, Yang Y, et al. 2018. Gibberellins play an essential role in late embryogenesis of Arabidopsis. Nature Plants 4:289−98

doi: 10.1038/s41477-018-0143-8
[10]

Yamamoto A, Kagaya Y, Toyoshima R, Kagaya M, Takeda S, et al. 2009. Arabidopsis NF-YB subunits LEC1 and LEC1-LIKE activate transcription by interacting with seed-specific ABRE-binding factors. The Plant Journal 58:843−56

doi: 10.1111/j.1365-313X.2009.03817.x
[11]

Umezawa T, Takahashi F, Shinozaki K. 2014. Phosphorylation networks in the abscisic acid signaling pathway. The Enzymes 35:27−56

doi: 10.1016/B978-0-12-801922-1.00002-6
[12]

Yang T, Wang H, Guo L, Wu X, Xiao Q, et al. 2022. ABA-induced phosphorylation of basic leucine zipper 29, ABSCISIC ACID INSENSITIVE 19, and Opaque2 by SnRK2.2 enhances gene transactivation for endosperm filling in maize. The Plant Cell 34:1933−56

doi: 10.1093/plcell/koac044
[13]

Yoshida T, Obata T, Feil R, Lunn JE, Fujita Y, et al. 2019. The role of abscisic acid signaling in maintaining the metabolic balance required for Arabidopsis growth under nonstress conditions. The Plant Cell 31:84−105

doi: 10.1105/tpc.18.00766
[14]

Schwartz SH, Qin X, Zeevaart JAD. 2003. Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant Physiology 131:1591−601

doi: 10.1104/pp.102.017921
[15]

Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. 2010. Abscisic acid: Emergence of a core signaling network. Annual Review of Plant Biology 61:651−79

doi: 10.1146/annurev-arplant-042809-112122
[16]

Raghavendra AS, Gonugunta VK, Christmann A, Grill E. 2010. ABA perception and signalling. Trends in Plant Science 15:395−401

doi: 10.1016/j.tplants.2010.04.006
[17]

Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, et al. 2009. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064−68

doi: 10.1126/science.1172408
[18]

Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, et al. 2009. Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 106:17588−93

doi: 10.1073/pnas.0907095106
[19]

Hrabak EM, Chan CWM, Gribskov M, Harper JF, Choi JH, et al. 2003. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiology 132:666−80

doi: 10.1104/pp.102.011999
[20]

Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, et al. 2009. Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant and Cell Physiology 50:1345−63

doi: 10.1093/pcp/pcp083
[21]

Yamaguchi-Shinozaki K, Shinozaki K. 2006. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology 57:781−803

doi: 10.1146/annurev.arplant.57.032905.105444
[22]

Takahashi Y, Ebisu Y, Kinoshita T, Doi M, Okuma E, et al. 2013. bHLH transcription factors that facilitate K+ uptake during stomatal opening are repressed by abscisic acid through phosphorylation. Science Signaling 6:ra48

doi: 10.1126/scisignal.2003760
[23]

Brandt B, Brodsky DE, Xue S, Negi J, Iba K, et al. 2012. Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proceedings of the National Academy of Sciences of the United States of America 109:10593−98

doi: 10.1073/pnas.1116590109
[24]

Lee SC, Lan W, Buchanan BB, Luan S. 2009. A protein kinase-phosphatase pair interacts with anion channel to regulate ABA signaling in plant guard cells. Proceedings of the National Academy of Sciences of the United States of America 106:21419−24

doi: 10.1073/pnas.0910601106
[25]

Umezawa T, Sugiyama N, Takahashi F, Anderson JC, Ishihama Y, et al. 2013. Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Science Signaling 6:rs8

doi: 10.1126/scisignal.2003509
[26]

Wang P, Xue L, Batelli G, Lee S, Hou YJ, et al. 2013. Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proceedings of the National Academy of Sciences of the United States of America 110:11205−10

doi: 10.1073/pnas.1308974110
[27]

Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, et al. 2006. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proceedings of the National Academy of Sciences of the United States of America 103:1988−93

doi: 10.1073/pnas.0505667103
[28]

Kagaya Y, Hobo T, Murata M, Ban A, Hattori T. 2002. Abscisic acid-induced transcription is mediated by phosphorylation of an abscisic acid response element binding factor, TRAB1. The Plant Cell 14:3177−89

doi: 10.1105/tpc.005272
[29]

Thalmann M, Pazmino D, Seung D, Horrer D, Nigro A, et al. 2016. Regulation of leaf starch degradation by abscisic acid is important for osmotic stress tolerance in plants. The Plant Cell 28:1860−78

doi: 10.1105/tpc.16.00143
[30]

Huang KL, Zhang ML, Ma GJ, Wu H, Wu XM, et al. 2017. Transcriptome profiling analysis reveals the role of silique in controlling seed oil content in Brassica napus. PLoS One 12:e0179027

doi: 10.1371/journal.pone.0179027
[31]

Huang KL, Wang H, Wei YL, Jia HX, Zha L, et al. 2019. The high-affinity transporter BnPHT1;4 is involved in phosphorus acquisition and mobilization for facilitating seed germination and early seedling growth of Brassica napus. BMC Plant Biology 19:156

doi: 10.1186/s12870-019-1765-3
[32]

Wang K, Yang Z, Qing D, Ren F, Liu S, et al. 2018. Quantitative and functional posttranslational modification proteomics reveals that TREPH1 plays a role in plant touch-delayed bolting. Proceedings of the National Academy of Sciences of the United States of America 115:10265−74

doi: 10.1073/pnas.1814006115
[33]

Guo YL, Huang Y, Gao J, Pu Y, Wang N, et al. 2018. CIPK9 is involved in seed oil regulation in Brassica napus L. and Arabidopsis thaliana (L.) Heynh. Biotechnology for Biofuels 11:124

doi: 10.1186/s13068-018-1122-z
[34]

Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang H, et al. 2014. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950−53

doi: 10.1126/science.1253435
[35]

Zhai ZY, Liu H, Shanklin J. 2017. Phosphorylation of WRINKLED1 by KIN10 results in its proteasomal degradation, providing a link between energy homeostasis and lipid biosynthesis. The Plant Cell 29:871−89

doi: 10.1105/tpc.17.00019
[36]

Lee G, Zheng Y, Cho S, Jang C, England C, et al. 2017. Post-transcriptional regulation of de novo lipogenesis by mTORC1-S6K1-SRPK2 signaling. Cell 171:1545−1558.e18

doi: 10.1016/j.cell.2017.10.037
[37]

Li D, Guo L, Deng B, Li M, Yang T, et al. 2018. Long non-coding RNA HR1 participates in the expression of SREBP-1c through phosphorylation of the PDK1/AKT/FoxO1 pathway. Molecular Medicine Reports 18:2850−56

doi: 10.3892/mmr.2018.9278
[38]

Li X, Li Y, Ding H, Dong J, Zhang R, et al. 2018. Insulin suppresses the AMPK signaling pathway to regulate lipid metabolism in primary cultured hepatocytes of dairy cows. The Journal of Dairy Research 85:157−62

doi: 10.1017/S002202991800016X
[39]

Ramachandiran I, Vijayakumar A, Ramya V, Rajasekharan R. 2018. Arabidopsis serine/threonine/tyrosine protein kinase phosphorylates oil body proteins that regulate oil content in the seeds. Scientific Reports 8:1154

doi: 10.1038/s41598-018-19311-3
[40]

Jolivet P, Boulard C, Bellamy A, Larré C, Barre M, et al. 2009. Protein composition of oil bodies from mature Brassica napus seeds. Proteomics 9:3268−84

doi: 10.1002/pmic.200800449
[41]

Meyer LJ, Gao J, Xu D, Thelen JJ. 2012. Phosphoproteomic analysis of seed maturation in Arabidopsis, rapeseed, and soybean. Plant Physiology 159:517−28

doi: 10.1104/pp.111.191700
[42]

Zhu L, Li Y, Wang C, Wang Z, Cao W, et al. 2023. The SnRK2.3-AREB1-TST1/2 cascade activated by cytosolic glucose regulates sugar accumulation across tonoplasts in apple and tomato. Nature Plants 9:951−64

doi: 10.1038/s41477-023-01443-8
[43]

Zhu W, Wu D, Jiang L, Ye L. 2020. Genome-wide identification and characterization of SnRK family genes in Brassica napus. BMC Plant Biology 20:287

doi: 10.1186/s12870-020-02484-3
[44]

Hackenberg D, Wu Y, Voigt A, Adams R, Schramm P, et al. 2012. Studies on differential nuclear translocation mechanism and assembly of the three subunits of the Arabidopsis thaliana transcription factor NF-Y. Molecular Plant 5:876−88

doi: 10.1093/mp/ssr107
[45]

Ke X, Xiao H, Peng Y, Wang J, Lv Q, et al. 2022. Phosphoenolpyruvate reallocation links nitrogen fixation rates to root nodule energy state. Science 378:971−77

doi: 10.1126/science.abq8591
[46]

Laloum T, De Mita S, Gamas P, Baudin M, Niebel A. 2013. CCAAT-box binding transcription factors in plants: Y so many? Trends in Plant Science 18:157−66

doi: 10.1016/j.tplants.2012.07.004
[47]

Kumimoto RW, Zhang Y, Siefers N, Holt BF. 2010. NF-YC3, NF-YC4 and NF-YC9 are required for CONSTANS-mediated, photoperiod-dependent flowering in Arabidopsis thaliana. The Plant Journal 63:379−91

doi: 10.1111/j.1365-313X.2010.04247.x