[1]
|
Lin L, Allemekinders H, Dansby A, Campbell L, Durance-Tod S, et al. 2013. Evidence of health benefits of canola oil. Nutrition Reviews 71:370−85 doi: 10.1111/nure.12033
CrossRef Google Scholar
|
[2]
|
Xu CC, Shanklin J. 2016. Triacylglycerol metabolism, function, and accumulation in plant vegetative tissues. Annual Review of Plant Biology 67:179−206 doi: 10.1146/annurev-arplant-043015-111641
CrossRef Google Scholar
|
[3]
|
Lepiniec L, Devic M, Roscoe TJ, Bouyer D, Zhou DX, et al. 2018. Molecular and epigenetic regulations and functions of the LAFL transcriptional regulators that control seed development. Plant Reproduction 31:291−307 doi: 10.1007/s00497-018-0337-2
CrossRef Google Scholar
|
[4]
|
Zhao H, Wu D, Kong F, Lin K, Zhang H, et al. 2017. The Arabidopsis thaliana nuclear factor Y transcription factors. Frontiers in Plant Science 7:2045 doi: 10.3389/fpls.2016.02045
CrossRef Google Scholar
|
[5]
|
Mu J, Tan H, Zheng Q, Fu F, Liang Y, et al. 2008. LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis. Plant Physiology 148:1042−54 doi: 10.1104/pp.108.126342
CrossRef Google Scholar
|
[6]
|
Tan H, Yang X, Zhang F, Qu C, Mu J, et al. 2011. Enhanced seed oil production in Canola by conditional expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in developing seeds. Plant Physiology 156:1577−88 doi: 10.1104/pp.111.175000
CrossRef Google Scholar
|
[7]
|
Yan G, Yu P, Tian X, Guo L, Tu J, et al. 2021. DELLA proteins BnaA6. RGA and BnaC7. RGA negatively regulate fatty acid biosynthesis by interacting with BnaLEC1s in Brassica napus. Plant Biotechnology Journal 19:2011−26 doi: 10.1111/pbi.13628
CrossRef Google Scholar
|
[8]
|
Pelletier JM, Kwong RW, Park S, Le BH, Baden R, et al. 2017. LEC1 sequentially regulates the transcription of genes involved in diverse developmental processes during seed development. Proceedings of the National Academy of Sciences of the United States of America 114:E6710−E6719 doi: 10.1073/pnas.1707957114
CrossRef Google Scholar
|
[9]
|
Hu Y, Zhou L, Huang M, He X, Yang Y, et al. 2018. Gibberellins play an essential role in late embryogenesis of Arabidopsis. Nature Plants 4:289−98 doi: 10.1038/s41477-018-0143-8
CrossRef Google Scholar
|
[10]
|
Yamamoto A, Kagaya Y, Toyoshima R, Kagaya M, Takeda S, et al. 2009. Arabidopsis NF-YB subunits LEC1 and LEC1-LIKE activate transcription by interacting with seed-specific ABRE-binding factors. The Plant Journal 58:843−56 doi: 10.1111/j.1365-313X.2009.03817.x
CrossRef Google Scholar
|
[11]
|
Umezawa T, Takahashi F, Shinozaki K. 2014. Phosphorylation networks in the abscisic acid signaling pathway. The Enzymes 35:27−56 doi: 10.1016/B978-0-12-801922-1.00002-6
CrossRef Google Scholar
|
[12]
|
Yang T, Wang H, Guo L, Wu X, Xiao Q, et al. 2022. ABA-induced phosphorylation of basic leucine zipper 29, ABSCISIC ACID INSENSITIVE 19, and Opaque2 by SnRK2.2 enhances gene transactivation for endosperm filling in maize. The Plant Cell 34:1933−56 doi: 10.1093/plcell/koac044
CrossRef Google Scholar
|
[13]
|
Yoshida T, Obata T, Feil R, Lunn JE, Fujita Y, et al. 2019. The role of abscisic acid signaling in maintaining the metabolic balance required for Arabidopsis growth under nonstress conditions. The Plant Cell 31:84−105 doi: 10.1105/tpc.18.00766
CrossRef Google Scholar
|
[14]
|
Schwartz SH, Qin X, Zeevaart JAD. 2003. Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant Physiology 131:1591−601 doi: 10.1104/pp.102.017921
CrossRef Google Scholar
|
[15]
|
Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR. 2010. Abscisic acid: Emergence of a core signaling network. Annual Review of Plant Biology 61:651−79 doi: 10.1146/annurev-arplant-042809-112122
CrossRef Google Scholar
|
[16]
|
Raghavendra AS, Gonugunta VK, Christmann A, Grill E. 2010. ABA perception and signalling. Trends in Plant Science 15:395−401 doi: 10.1016/j.tplants.2010.04.006
CrossRef Google Scholar
|
[17]
|
Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, et al. 2009. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064−68 doi: 10.1126/science.1172408
CrossRef Google Scholar
|
[18]
|
Umezawa T, Sugiyama N, Mizoguchi M, Hayashi S, Myouga F, et al. 2009. Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 106:17588−93 doi: 10.1073/pnas.0907095106
CrossRef Google Scholar
|
[19]
|
Hrabak EM, Chan CWM, Gribskov M, Harper JF, Choi JH, et al. 2003. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiology 132:666−80 doi: 10.1104/pp.102.011999
CrossRef Google Scholar
|
[20]
|
Nakashima K, Fujita Y, Kanamori N, Katagiri T, Umezawa T, et al. 2009. Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant and Cell Physiology 50:1345−63 doi: 10.1093/pcp/pcp083
CrossRef Google Scholar
|
[21]
|
Yamaguchi-Shinozaki K, Shinozaki K. 2006. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology 57:781−803 doi: 10.1146/annurev.arplant.57.032905.105444
CrossRef Google Scholar
|
[22]
|
Takahashi Y, Ebisu Y, Kinoshita T, Doi M, Okuma E, et al. 2013. bHLH transcription factors that facilitate K+ uptake during stomatal opening are repressed by abscisic acid through phosphorylation. Science Signaling 6:ra48 doi: 10.1126/scisignal.2003760
CrossRef Google Scholar
|
[23]
|
Brandt B, Brodsky DE, Xue S, Negi J, Iba K, et al. 2012. Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proceedings of the National Academy of Sciences of the United States of America 109:10593−98 doi: 10.1073/pnas.1116590109
CrossRef Google Scholar
|
[24]
|
Lee SC, Lan W, Buchanan BB, Luan S. 2009. A protein kinase-phosphatase pair interacts with anion channel to regulate ABA signaling in plant guard cells. Proceedings of the National Academy of Sciences of the United States of America 106:21419−24 doi: 10.1073/pnas.0910601106
CrossRef Google Scholar
|
[25]
|
Umezawa T, Sugiyama N, Takahashi F, Anderson JC, Ishihama Y, et al. 2013. Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Science Signaling 6:rs8 doi: 10.1126/scisignal.2003509
CrossRef Google Scholar
|
[26]
|
Wang P, Xue L, Batelli G, Lee S, Hou YJ, et al. 2013. Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proceedings of the National Academy of Sciences of the United States of America 110:11205−10 doi: 10.1073/pnas.1308974110
CrossRef Google Scholar
|
[27]
|
Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, et al. 2006. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proceedings of the National Academy of Sciences of the United States of America 103:1988−93 doi: 10.1073/pnas.0505667103
CrossRef Google Scholar
|
[28]
|
Kagaya Y, Hobo T, Murata M, Ban A, Hattori T. 2002. Abscisic acid-induced transcription is mediated by phosphorylation of an abscisic acid response element binding factor, TRAB1. The Plant Cell 14:3177−89 doi: 10.1105/tpc.005272
CrossRef Google Scholar
|
[29]
|
Thalmann M, Pazmino D, Seung D, Horrer D, Nigro A, et al. 2016. Regulation of leaf starch degradation by abscisic acid is important for osmotic stress tolerance in plants. The Plant Cell 28:1860−78 doi: 10.1105/tpc.16.00143
CrossRef Google Scholar
|
[30]
|
Huang KL, Zhang ML, Ma GJ, Wu H, Wu XM, et al. 2017. Transcriptome profiling analysis reveals the role of silique in controlling seed oil content in Brassica napus. PLoS One 12:e0179027 doi: 10.1371/journal.pone.0179027
CrossRef Google Scholar
|
[31]
|
Huang KL, Wang H, Wei YL, Jia HX, Zha L, et al. 2019. The high-affinity transporter BnPHT1;4 is involved in phosphorus acquisition and mobilization for facilitating seed germination and early seedling growth of Brassica napus. BMC Plant Biology 19:156 doi: 10.1186/s12870-019-1765-3
CrossRef Google Scholar
|
[32]
|
Wang K, Yang Z, Qing D, Ren F, Liu S, et al. 2018. Quantitative and functional posttranslational modification proteomics reveals that TREPH1 plays a role in plant touch-delayed bolting. Proceedings of the National Academy of Sciences of the United States of America 115:10265−74 doi: 10.1073/pnas.1814006115
CrossRef Google Scholar
|
[33]
|
Guo YL, Huang Y, Gao J, Pu Y, Wang N, et al. 2018. CIPK9 is involved in seed oil regulation in Brassica napus L. and Arabidopsis thaliana (L.) Heynh. Biotechnology for Biofuels 11:124 doi: 10.1186/s13068-018-1122-z
CrossRef Google Scholar
|
[34]
|
Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang H, et al. 2014. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950−53 doi: 10.1126/science.1253435
CrossRef Google Scholar
|
[35]
|
Zhai ZY, Liu H, Shanklin J. 2017. Phosphorylation of WRINKLED1 by KIN10 results in its proteasomal degradation, providing a link between energy homeostasis and lipid biosynthesis. The Plant Cell 29:871−89 doi: 10.1105/tpc.17.00019
CrossRef Google Scholar
|
[36]
|
Lee G, Zheng Y, Cho S, Jang C, England C, et al. 2017. Post-transcriptional regulation of de novo lipogenesis by mTORC1-S6K1-SRPK2 signaling. Cell 171:1545−1558.e18 doi: 10.1016/j.cell.2017.10.037
CrossRef Google Scholar
|
[37]
|
Li D, Guo L, Deng B, Li M, Yang T, et al. 2018. Long non-coding RNA HR1 participates in the expression of SREBP-1c through phosphorylation of the PDK1/AKT/FoxO1 pathway. Molecular Medicine Reports 18:2850−56 doi: 10.3892/mmr.2018.9278
CrossRef Google Scholar
|
[38]
|
Li X, Li Y, Ding H, Dong J, Zhang R, et al. 2018. Insulin suppresses the AMPK signaling pathway to regulate lipid metabolism in primary cultured hepatocytes of dairy cows. The Journal of Dairy Research 85:157−62 doi: 10.1017/S002202991800016X
CrossRef Google Scholar
|
[39]
|
Ramachandiran I, Vijayakumar A, Ramya V, Rajasekharan R. 2018. Arabidopsis serine/threonine/tyrosine protein kinase phosphorylates oil body proteins that regulate oil content in the seeds. Scientific Reports 8:1154 doi: 10.1038/s41598-018-19311-3
CrossRef Google Scholar
|
[40]
|
Jolivet P, Boulard C, Bellamy A, Larré C, Barre M, et al. 2009. Protein composition of oil bodies from mature Brassica napus seeds. Proteomics 9:3268−84 doi: 10.1002/pmic.200800449
CrossRef Google Scholar
|
[41]
|
Meyer LJ, Gao J, Xu D, Thelen JJ. 2012. Phosphoproteomic analysis of seed maturation in Arabidopsis, rapeseed, and soybean. Plant Physiology 159:517−28 doi: 10.1104/pp.111.191700
CrossRef Google Scholar
|
[42]
|
Zhu L, Li Y, Wang C, Wang Z, Cao W, et al. 2023. The SnRK2.3-AREB1-TST1/2 cascade activated by cytosolic glucose regulates sugar accumulation across tonoplasts in apple and tomato. Nature Plants 9:951−64 doi: 10.1038/s41477-023-01443-8
CrossRef Google Scholar
|
[43]
|
Zhu W, Wu D, Jiang L, Ye L. 2020. Genome-wide identification and characterization of SnRK family genes in Brassica napus. BMC Plant Biology 20:287 doi: 10.1186/s12870-020-02484-3
CrossRef Google Scholar
|
[44]
|
Hackenberg D, Wu Y, Voigt A, Adams R, Schramm P, et al. 2012. Studies on differential nuclear translocation mechanism and assembly of the three subunits of the Arabidopsis thaliana transcription factor NF-Y. Molecular Plant 5:876−88 doi: 10.1093/mp/ssr107
CrossRef Google Scholar
|
[45]
|
Ke X, Xiao H, Peng Y, Wang J, Lv Q, et al. 2022. Phosphoenolpyruvate reallocation links nitrogen fixation rates to root nodule energy state. Science 378:971−77 doi: 10.1126/science.abq8591
CrossRef Google Scholar
|
[46]
|
Laloum T, De Mita S, Gamas P, Baudin M, Niebel A. 2013. CCAAT-box binding transcription factors in plants: Y so many? Trends in Plant Science 18:157−66 doi: 10.1016/j.tplants.2012.07.004
CrossRef Google Scholar
|
[47]
|
Kumimoto RW, Zhang Y, Siefers N, Holt BF. 2010. NF-YC3, NF-YC4 and NF-YC9 are required for CONSTANS-mediated, photoperiod-dependent flowering in Arabidopsis thaliana. The Plant Journal 63:379−91 doi: 10.1111/j.1365-313X.2010.04247.x
CrossRef Google Scholar
|