[1] |
Chen Z, Chen X. 1990. The diagnosis of tea diseases and their control. Shanghai, China: Shanghai Science and Technical Publishers. |
[2] |
Ponmurugan P, Manjukarunambika K, Gnanamangai BM. 2016. Impact of various foliar diseases on the biochemical, volatile and quality constituents of green and black teas. Australasian Plant Pathology 45:175−85 doi: 10.1007/s13313-016-0402-y |
[3] |
Liu X, Jiang J, Zhan JB, Zhou KY, Chen Z. 2011. Main diseases and insect pests of tea in Meitan county. Guizhou Agricultural Sciences 39(9):77−80(In Chinese) doi: 10.3969/j.issn.1001-3601.2011.09.020 |
[4] |
Rao J. 2021. Research progress in the control of tea anthracnose. Agricultural technology service 38(8):39−42+46(in Chinese) |
[5] |
Bora P, Chandra Bora L, Bhuyan RP, Hashem A, Fathi Abd-Allah E. 2022. Bioagent consortia assisted suppression in grey blight disease with enhanced leaf nutrients and biochemical properties of tea (Camellia sinensis). Biological Control 170:104907 doi: 10.1016/j.biocontrol.2022.104907 |
[6] |
Lu S, Zhao X, Luo L, Zhang X, Cheng Y, et al. 2021. Screening, Identification and Application of Trichoderma Strain Antagonizing Tea Grey Blight. Guizhou Agricultural Sciences 49(3):44−49(In Chinese) doi: 10.3969/j.issn.1001-3601.2021.03.007 |
[7] |
Zhu Y, Luo X, Liang H, et al. 2022. Identification of a Tea Rhizosphere Bacterium and its Biocontrol of Tea Anthracnose Disease. Journal of Tea Science 42(1):87−100(In Chinese) doi: 10.3969/j.issn.1000-369X.2022.01.009 |
[8] |
Yang X, Tan L, Zhang Y, Chen Z, Liu C, et al. 2023. Identification of pathogen from tea leaves with gray blight disease and screening of biocontrol strain. Journal of Hunan Agricultural University (Natural Sciences) 49(2):195−200(In Chinese) doi: 10.13331/j.cnki.jhau.2023.02.011 |
[9] |
Le Cocq K, Gurr SJ, Hirsch PR, Mauchline TH. 2017. Exploitation of endophytes for sustainable agricultural intensification. Molecular Plant Pathology 18:469−73 doi: 10.1111/mpp.12483 |
[10] |
Wani ZA, Ashraf N, Mohiuddin T, Riyaz-Ul-Hassan S. 2015. Plant-endophyte symbiosis, an ecological perspective. Applied Microbiology and Biotechnology 99:2955−65 doi: 10.1007/s00253-015-6487-3 |
[11] |
Busby PE, Peay KG, Newcombe G. 2016. Common foliar fungi of Populus trichocarpa modify Melampsora rust disease severity. New Phytologist 209:1681−92 doi: 10.1111/nph.13742 |
[12] |
Kottb M, Gigolashvili T, Großkinsky DK, Piechulla B. 2015. Trichoderma volatiles effecting Arabidopsis: from inhibition to protection against phytopathogenic fungi. Frontiers in Microbiology 6:995 doi: 10.3389/fmicb.2015.00995 |
[13] |
Shoresh M, Harman GE, Mastouri F. 2010. Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology 48:21−43 doi: 10.1146/annurev-phyto-073009-114450 |
[14] |
Stein E, Molitor A, Kogel KH, Waller F. 2008. Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant and Cell Physiology 49:1747−51 doi: 10.1093/pcp/pcn147 |
[15] |
Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, et al. 1996. Systemic acquired resistance. The Plant Cell 8:1809 doi: 10.2307/3870231 |
[16] |
De Silva NI, Brooks S, Lumyong S, Hyde KD. 2019. Use of endophytes as biocontrol agents. Fungal Biology Reviews 33(2):133−48 doi: 10.1016/j.fbr.2018.10.001 |
[17] |
Grabka R, d'Entremont TW, Adams SJ, Walker AK, Tanney JB, et al. 2022. Fungal endophytes and their role in agricultural plant protection against pests and pathogens. Plants 11(3):384 doi: 10.3390/plants11030384 |
[18] |
Akinsanmi OA, Nisa S, Jeff-Ego OS, Shivas RG, Drenth A. 2017. Dry flower disease of Macadamia in Australia caused by Neopestalotiopsis macadamiae sp. nov. and Pestalotiopsis macadamiae sp. nov. Plant Disease 101:45−53 doi: 10.1094/PDIS-05-16-0630-RE |
[19] |
Bai Q, Zhai L, Chen X, Hong N, Xu W, et al. 2015. Biological and molecular characterization of five Phomopsis species associated with pear shoot canker in China. Plant Disease 99:1704−12 doi: 10.1094/PDIS-03-15-0259-RE |
[20] |
Chen Y, Qiao W, Zeng L, Shen D, Liu Z, et al. 2017. Characterization, pathogenicity, and phylogenetic analyses of Colletotrichum species associated with brown blight disease on Camellia sinensis in China. Plant Disease 101:1022−28 doi: 10.1094/PDIS-12-16-1824-RE |
[21] |
Wang W, Liang X, Zhang R, Gleason ML, Sun G. 2017. Liquid shake culture overcomes solid plate culture in inducing conidial production of Colletotrichum isolates. Australasian Plant Pathology 46:285−87 doi: 10.1007/s13313-017-0490-3 |
[22] |
Gao JF. 2000. Experiment technique of plant physiology. Beijing, China: World Books Press |
[23] |
Zheng S, Zhou Z, Chen X, Cai L, Jiang S, et al. 2023. Screening, identification and culture condition optimization of antagonistic endophytic bacteria against Gloeosporium theae-sinensis Miyake. Journal of Tea Science 43(2):205−15(In Chinese) doi: 10.13305/j.cnki.jts.2023.02.006 |
[24] |
Zheng S, Gao P, Zhang X, Chen X. 2023. Screening and culture condition optimization of antagonistic soil bacteria against Gloeosporium theae-sinensis Miyake. Subtropical Agriculture Research 2023,19(3):194−201(In Chinese) doi: 10.13321/j.cnki.subtrop.agric.res.2023.03.007 |
[25] |
Dai Y, Wu N, Gao Z, Wang G, Gong A, et al. 2021. Screening and Identification of the Endophytic Bacteria Bacillus velezensis Against Tea Anthracnose. Journal of Xinyang Normal University (Natural Science Edition) 34(2):201−7 (in Chinese) |
[26] |
Zhang Y, Tan L, Ren Z, Yang Y, Yang X, et al. 2023. Screening, Identification and Determination of Antagonistic Actinomycetes Strain against Tea Anthracnose. Chinese Journal of Biological Control 39(3):646−56(In Chinese) doi: 10.16409/j.cnki.2095-039x.2023.02.031 |
[27] |
Li C, Zhou J, Du G, Chen J, Takahashi S, et al. 2020. Developing Aspergillus niger as a cell factory for food enzyme production. Biotechnology Advances 44:107630 doi: 10.1016/j.biotechadv.2020.107630 |
[28] |
Xu Y, Liu Y, Pang D, Ma Y, Tang H, et al. 2023. Catalytic Characteristics of Aspergillus niger Protease in Pu'er Tea. Guizhou Agricultural Sciences 51(11):43−48(in Chinese) doi: 10.3969/j.issn.1001-3601.2023.11.006 |
[29] |
Li WJ, Li H, Ni H, Li LJ. 2019. Effect of Aspergillus niger extracellular enzymes on the tea polyphenols of oolong tea. Food Research and Development 40(22):11−19 doi: 10.12161/j.issn.1005-6521.2019.22.003 |
[30] |
Belancic A, Scarpa J, Peirano A, Díaz R, Steiner J, et al. 1995. Penicillium purpurogenum produces several xylanases: purification and properties of two of the enzymes. Journal of Biotechnology 41:71−79 doi: 10.1016/0168-1656(95)00057-w |
[31] |
Steiner J, Socha C, Eyzaguirre J. 1994. Culture conditions for enhanced cellulase production by a native strain of Penicillium purpurogenum. World Journal of Microbiology and Biotechnology 10:280−84 doi: 10.1007/BF00414863 |
[32] |
Maeda RN, Barcelos CA, Santa Anna LMM, Pereira N Jr. 2013. Cellulase production by Penicillium funiculosum and its application in the hydrolysis of sugar cane bagasse for second generation ethanol production by fed batch operation. Journal of Biotechnology 163:38−44 doi: 10.1016/j.jbiotec.2012.10.014 |
[33] |
Goyari S, Devi SH, Bengyella L, Khan M, Sharma CK, et al. 2015. Unveiling the optimal parameters for cellulolytic characteristics of Talaromyces verruculosus SGMNPf3 and its secretory enzymes. Journal of Applied Microbiology 119:88−98 doi: 10.1111/jam.12816 |
[34] |
Prabhukarthikeyan SR, Keerthana U, Raguchander T. 2018. Antibiotic-producing Pseudomonas fluorescens mediates rhizome rot disease resistance and promotes plant growth in turmeric plants. Microbiological Research 210:65−73 doi: 10.1016/j.micres.2018.03.009 |
[35] |
Khan AL, Waqas M, Khan AR, Hussain J, Kang SM, et al. 2013. Fungal endophyte Penicillium janthinellum LK5 improves growth of ABA-deficient tomato under salinity. World Journal of Microbiology and Biotechnology 29:2133−44 doi: 10.1007/s11274-013-1378-1 |