-
To identify epiphytic fungi that exhibit antagonistic effects against tea plant anthracnose pathogens, epiphytic fungi from healthy tea plant leaves were initially isolated and purified. These fungi were then tested for pathogenicity and assessed for their antagonistic properties. The findings revealed that a total of 13 epiphytic fungi were purified, which belonged to various genera, including Cercospora, Cladosporium tenuissimum, Fusarium oxysporum, Nemania bipapillata, Phoma sp., Phytophthora, Trichoderma, Aspergillus niger, Macrocybe gigantea, and Talaromyces (Table 1). Among them, nine species were not pathogenic to tea leaves. We conducted plate antagonism experiments on these nine epiphytic fungi against the pathogen Colletotrichum camelliae, respectively. As a result, it was found that four of them exhibited antagonistic properties against pathogens (Fig. 1). Furthermore, En10 and En11 exhibit antagonistic behavior towards pathogens through types of substrate competition and mycoparasitism, whereas En12 and En13 exhibit antibiosis type (Table 1, Fig. 1). Therefore, the En10 and En12 strains were selected for further analysis due to their unique antagonistic characteristics. Through examination of colony and spore morphology (Fig. 2a & b) and phylogenetic identification (Fig. 2c), it was determined that En10 and En12 were affiliated with Aspergillus niger and Talaromyces, respectively. These results suggest that these two endophytic fungi may have potential as biocontrol agents against tea plant anthracnose pathogen.
Table 1. Information of endophytes isolated from tea plant.
No. Cultivar Taxonomy Pathogenicity Antagonistic type En01 'Shaancha1' Cercospora No − En02 'Shaancha1' Cercospora Yes − En03 'Shaancha1' Cercospora Yes − En04 'Shaancha1' Cladosporium tenuissimum No − En05 'Shaancha1' Fusarium oxysporum Yes − En06 'Shaancha1' Nemania bipapillata Yes − En07 'Shaancha1' Phoma sp. No − En08 'Shaancha1' Phytophthora No − En09 'Shaancha1' Trichoderma No − En10 'Longjing 43' Aspergillus niger No AC En11 'Longjing 43' Macrocybe gigantea No AC En12 'Longjing 43' Talaromyces No B En13 'Longjing 43' Talaromyces No B In column of 'Antagonistic Type', A, B and C represent competition for substrate, antibiosis and mycoparasitism, respectively. Figure 1.
Plate antagonism experiments on endophytic fungi against the pathogen Colletotrichum camelliae. Scale bar = 1 cm. CK: Two 5 mm PDA plugs were used as controls.
Figure 2.
Morphological and molecular identification of En10 and En12. (a) Front and reverse view of En10 colony on PDA after 9 d, displaying hyphae and conidia. (b) Front and reverse view of En12 colony on PDA after 9 d, showing hyphae and conidia. (c) Phylogenetic analysis based on sequences of the internal transcribed spacer between En10 and En12.
Inhibition of colony growth of anthracnose pathogen by antagonistic fungi
-
To further verify the inhibition of antagonistic fungi against the anthracnose pathogen, a dual culture test was executed. The results demonstrated that the two antagonistic fungi had a significant inhibitory effect on the colony growth of the anthracnose pathogen. After a culture period of 9 d, En10 and En12 exhibited inhibitory rates of 59% and 44% on the growth of the anthracnose pathogen, respectively (Fig 3). These results further confirm the antagonistic effects of En10 and En12 against the tea plant anthracnose pathogen in vitro.
Figure 3.
Inhibition of colony growth of anthracnose pathogen by antagonistic fungi En10 and En12. (a) Dual culture test on anta gonistic fungi against the anthracnose pathogen. CK: Two 5 mm PDA plugs were used as controls. Scale bar = 1 cm. (b), (c) Area change of pathogen under the condition of antagonistic culture. The data represent the average ± SD of biological repeats, ns represents no significant difference and * stands for significant difference analysis.
Control effect of antagonistic fungi against anthracnose on tea leaf
-
To further elucidate the efficacy of antagonistic fungi in controlling anthracnose in tea leaves, we conducted resistance experiments on tea plant. Tea leaves were sprayed with spore suspensions of antagonistic fungi at three distinct concentrations, including 104/ml, 105/ml and 106/ml. However, it was observed that spraying high and medium concentrations of spore suspension followed by inoculation pathogen resulted in a significant number of tea leaf deaths. For instance, after spraying 106/ml concentration of En10 and En12, the mortality rate of tea leaves reached 14.29% and 66.70% on the third day, respectively, while the control group had a mortality rate of 0%. On the fifth day, the mortality rate of tea leaves reached 42.86% and 83.30%, respectively, while the control group had a mortality rate of 42.86% (data not shown). Therefore, the concentration of 104/ml spore suspension was chosen for treatment. The results of the study demonstrated a noteworthy reduction in the incidence rate of tea leaves that were treated with antagonistic fungi, as opposed to the control group. This suggests that the application of antagonistic fungi on tea leaf has the potential to inhibit tea plant anthracnose (Fig. 4a & b).
Figure 4.
Determination of the control effect of antagonistic fungi against the anthracnose on tea leaves. (a) and (b) indicate the images and the diseased area of tea leaves treated by blank solvent, fungi spores of En10 and En12 after 1, 3, and 5 d, respectively. The data represent the average ± SD of biological repeats. * means significant difference (p ≤ 0.05); ** represents significant difference (p ≤ 0.01); ns indicates no significant difference.
Activities of antioxidant enzymes after En10 and En12 treatment
-
The activities of antioxidant enzymes in tea leaves treated with En10 and En12 were measured. The results indicated a significant upregulation of SOD and POD enzyme activities following En12 treatment compared to the control (Fig. 5a & b). Particularly noteworthy was the 5.47-fold increase in SOD activity, while CAT enzyme activity remained unchanged (Fig. 5c). In contrast, although En10 exhibited notable resistance to the anthracnose pathogen, treatment of tea leaves with it did not result in significant alterations in the activity of associated antioxidant enzymes (Fig. 5). It is suggested that En12 may enhance the antioxidant response of tea leaves, increasing their resistance to anthracnose.
Figure 5.
Detection of enzyme activity in tea leaves after spraying with antagonistic fungi. (a)−(c) indicates the SOD activity, POD activity and CAT activity, respectively. CK: sterile water treated. En10 (En12): antagonistic fungi spores treated. The data represent the average ± SD of three biological repeats. * stands for significant difference analysis and ns indicates no significant difference.
-
All data supporting the conclusions of this study may be found in the publication, which are available online. Any additional relevant information can be obtained from the corresponding author upon request.
-
About this article
Cite this article
Liu L, Guan H, Jiao M, Ma Z, Bao Y, et al. 2024. Identification of two antagonistic fungi and antifungal activity analysis against anthracnose in tea plant (Camellia sinensis). Beverage Plant Research 4: e032 doi: 10.48130/bpr-0024-0020
Identification of two antagonistic fungi and antifungal activity analysis against anthracnose in tea plant (Camellia sinensis)
- Received: 22 March 2024
- Revised: 28 April 2024
- Accepted: 13 May 2024
- Published online: 03 September 2024
Abstract: Anthracnose, a prevalent disease affecting tea leaves, poses a significant threat to tea yield and quality. Current control measures predominantly rely on chemical pesticides, raising concerns over environmental contamination and pesticide residues. In exploring biological alternatives, 13 epiphytic fungi were isolated from healthy tea leaves, with nine demonstrating non-pathogenic characteristics. Through a plate confrontation test, strains exhibiting high antagonistic activity against anthracnose were identified, notably En10 and En12, which effectively suppressed the growth of tea plant anthracnose pathogens. Morphological and molecular analyses classified En10 as Aspergillus niger and En12 as Talaromyces. The application of spore suspensions of varying concentrations of En10 and En12 onto tea leaves revealed a significant reduction in anthracnose incidence. Notably, En12 exhibited the capacity to enhance the antioxidant potential of tea leaves. These findings underscore the potential of utilizing antagonistic fungi En10 and En12 for anthracnose control in tea plant, offering valuable insights and technical foundations for biological management strategies against this disease.
-
Key words:
- Tea anthracnose /
- Epiphytic fungi /
- Aspergillus niger /
- Talaromyces /
- Biological control