[1] |
Xia EH, Zhang HB, Sheng J, Li K, Zhang QJ, et al. 2017. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Molecular Plant 10:866−77 doi: 10.1016/j.molp.2017.04.002 |
[2] |
Wei C, Yang H, Wang S, Zhao J, Liu C, et al. 2018. Draft genome sequence of Camellia sinensis var. sinensis provides insights into the evolution of the tea genome and tea quality. Proceedings of the National Academy of Sciences of the United States of America 115:E4151−E4158 doi: 10.1073/pnas.1719622115 |
[3] |
Henry BC. 1886. Ling-Nam: or, interior views of southern China, including explorations in the hitherto untraversed island of Hainan. London: SW Partridge. 511 pp. |
[4] |
Wambulwa MC, Meegahakumbura MK, Kamunya S, Wachira FN. 2021. From the wild to the cup: tracking footprints of the tea species in time and space. Frontiers in Nutrition 8:706770 doi: 10.3389/fnut.2021.706770 |
[5] |
Li MM, Meegahakumbura MK, Wambulwa MC, Burgess KS, Möller M, et al. 2023. Genetic analyses of ancient tea trees provide insights into the breeding history and dissemination of Chinese Assam tea (Camellia sinensis var. assamica). Plant Diversity 46:229−37 doi: 10.1016/j.pld.2023.06.002 |
[6] |
Zhang W, Zhang Y, Qiu H, Guo Y, Wan H, et al. 2020. Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties. Nature Communications 11:3719 doi: 10.1038/s41467-020-17498-6 |
[7] |
Zhang X, Chen S, Shi L, Gong D, Zhang S, et al. 2021. Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis. Nature Genetics 53:1250−59 doi: 10.1038/s41588-021-00895-y |
[8] |
Wang X, Feng H, Chang Y, Ma C, Wang L, et al. 2020. Population sequencing enhances understanding of tea plant evolution. Nature Communications 11:4447 doi: 10.1038/s41467-020-18228-8 |
[9] |
Zhou Y, He W, He Y, Chen Q, Gao Y, et al. 2023. Formation of 8-hydroxylinalool in tea plant Camellia sinensis var. Assamica ‘Hainan dayezhong’. Food Chemistry: Molecular Sciences 6:100173 doi: 10.1016/j.fochms.2023.100173 |
[10] |
Huang H, Shi C, Liu Y, Mao SY, Gao LZ. 2014. Thirteen Camellia chloroplast genome sequences determined by high-throughput sequencing: genome structure and phylogenetic relationships. BMC Evolutionary Biology 14:151 doi: 10.1186/1471-2148-14-151 |
[11] |
Whittaker RJ, Fernández-Palacios JM, Matthews TJ, Borregaard MK, Triantis KA. 2017. Island biogeography: Taking the long view of nature’s laboratories. Science 357:eaam8326 doi: 10.1126/science.aam8326 |
[12] |
Zhou M, Liu J, Liang Y, Li D. 2017. Distribution of Holttumochloa (Poaceae: Bambusoideae) in China with description of a new species revealed by morphological and molecular evidence. Plant Diversity 39:135−39 doi: 10.1016/j.pld.2017.05.001 |
[13] |
Tian X, Wang Q, Zhou Y. 2018. Euphorbia Section Hainanensis (Euphorbiaceae), a New Section Endemic to the Hainan Island of China From Biogeographical, Karyological, and Phenotypical Evidence. Frontiers in Plant Scienc 9:660 doi: 10.3389/fpls.2018.00660 |
[14] |
Wang XH, Li J, Zhang LM, He ZW, Mei QM, et al. 2019. Population Differentiation and Demographic History of the Cycas taiwaniana Complex (Cycadaceae) Endemic to South China as Indicated by DNA Sequences and Microsatellite Markers. Frontiers in Genetics 10:1238 doi: 10.3389/fgene.2019.01238 |
[15] |
Li X, Shen Z, Ma C, Yang L, Duan S, et al. 2023. Teabase: A comprehensive omics database of Camellia. Plant Communications 4:100664 doi: 10.1016/j.xplc.2023.100664 |
[16] |
Jiang H, Long W, Zhang H, Mi C, Zhou T, et al. 2019. Genetic diversity and genetic structure of Decalobanthus boisianus in Hainan Island, China. Ecology and Evolution 9:5362−71 doi: 10.1002/ece3.5127 |
[17] |
Darwin C. 1859. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murray. https://doi.org/10.5962/bhl.title.87938 |
[18] |
Lussu M, Marignani M, Lai R, Loi MC, Cogoni A, et al. 2020. A Synopsis of Sardinian Studies: Why Is it Important to Work on Island Orchids? Plants 9:853 doi: 10.3390/plants9070853 |
[19] |
Nazir MF, He S, Ahmed H, Sarfraz Z, Jia Y, et al. 2021. Genomic insight into the divergence and adaptive potential of a forgotten landrace G. hirsutum L. purpurascens. Journal of Genetics and Genomics 48:473−84 doi: 10.1016/j.jgg.2021.04.009 |
[20] |
Lynch M, Ackerman MS, Gout JF, Long H, Sung W, et al. 2016. Genetic drift, selection and the evolution of the mutation rate. Nature Reviews Genetics 17:704−14 doi: 10.1038/nrg.2016.104 |
[21] |
Su H, Qu LJ, He K, Zhang Z, Wang J, et al. 2003. The Great Wall of China: a physical barrier to gene flow? Heredity 90:212−19 doi: 10.1038/sj.hdy.6800237 |
[22] |
Wu LX, Xu HY, Jian SG, Gong X, Feng XY. 2022. Geographic factors and climatic fluctuation drive the genetic structure and demographic history of Cycas taiwaniana (Cycadaceae), an endemic endangered species to Hainan Island in China. Ecology and Evolution 12:e9508 doi: 10.1002/ece3.9508 |
[23] |
Wang N, Liang B, Wang J, Yeh CF, Liu Y, et al. 2016. Incipient speciation with gene flow on a continental island: Species delimitation of the Hainan Hwamei (Leucodioptron canorum owstoni, Passeriformes, Aves). Molecular Phylogenetics and Evolution 102:62−73 doi: 10.1016/j.ympev.2016.05.022 |
[24] |
Wang C, Ma X, Ren M, Tang L. 2020. Genetic diversity and population structure in the endangered tree Hopea hainanensis (Dipterocarpaceae) on Hainan Island, China. PLoS One 15:e0241452 doi: 10.1371/journal.pone.0241452 |
[25] |
Gu S, Yan YR, Yi MR, Luo ZS, Wen H, et al. 2022. Genetic pattern and demographic history of cutlassfish (Trichiurus nanhaiensis) in South China Sea by the influence of Pleistocene climatic oscillations. Scientific Reports 12:14716 doi: 10.1038/s41598-022-18861-x |
[26] |
Amos W, Harwood J. 1998. Factors affecting levels of genetic diversity in natural populations. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 353:177−86 doi: 10.1098/rstb.1998.0200 |
[27] |
Kremen C, Merenlender AM. 2018. Landscapes that work for biodiversity and people. Science 362:eaau6020 doi: 10.1126/science.aau6020 |
[28] |
Goodall-Copestake WP, Tarling GA, Murphy EJ. 2012. On the comparison of population-level estimates of haplotype and nucleotide diversity: a case study using the gene cox1 in animals. Heredity 109:50−6 doi: 10.1038/hdy.2012.12 |
[29] |
Salgotra RK, Chauhan BS. 2023. Genetic diversity, conservation, and utilization of plant genetic resources. Genes 14:174 doi: 10.3390/genes14010174 |
[30] |
Warschefsky E, Penmetsa RV, Cook DR, von Wettberg EJB. 2014. Back to the wilds: tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives. American Journal of Botany 101:1791−800 doi: 10.3732/ajb.1400116 |
[31] |
Niu S, Song Q, Koiwa H, Qiao D, Zhao D, et al. 2019. Genetic diversity, linkage disequilibrium, and population structure analysis of the tea plant (Camellia sinensis) from an origin center, Guizhou plateau, using genome-wide SNPs developed by genotyping-by-sequencing. BMC Plant Biology 19:328 doi: 10.1186/s12870-019-1917-5 |
[32] |
Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884−i890 doi: 10.1093/bioinformatics/bty560 |
[33] |
Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754−60 doi: 10.1093/bioinformatics/btp324 |
[34] |
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25:2078−9 doi: 10.1093/bioinformatics/btp352 |
[35] |
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20:1297−303 doi: 10.1101/gr.107524.110 |
[36] |
Wang K, Li M, Hakonarson H. 2010. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research 38:e164 doi: 10.1093/nar/gkq603 |
[37] |
Lee T-H, Guo H, Wang X, Kim C, Paterson AHJBg. 2014. SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data. BMC Genomics 15:162 doi: 10.1186/1471-2164-15-162 |
[38] |
Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, et al. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics 81:559−75 doi: 10.1086/519795 |
[39] |
Yang J, Lee SH, Goddard ME, Visscher PM. 2011. GCTA: a tool for genome-wide complex trait analysis. American Journal of Human Genetics 88:76−82 doi: 10.1016/j.ajhg.2010.11.011 |
[40] |
Alexander DH, Novembre J, Lange K. 2009. Fast model-based estimation of ancestry in unrelated individuals. Genome Research 19:1655−64 doi: 10.1101/gr.094052.109 |
[41] |
Manichaikul A, Mychaleckyj JC, Rich SS, Daly K, Sale M, et al. 2010. Robust relationship inference in genome-wide association studies. Bioinformatics 26:2867−73 doi: 10.1093/bioinformatics/btq559 |
[42] |
Pickrell JK, Pritchard JK. 2012. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genetics 8:e1002967 doi: 10.1371/journal.pgen.1002967 |
[43] |
Fitak RR. 2021. OptM: estimating the optimal number of migration edges on population trees using Treemix. Biology Methods and Protocols 6:bpab017 doi: 10.1093/biomethods/bpab017 |
[44] |
Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N, et al. 2012. Ancient admixture in human history. Genetics 192:1065−93 doi: 10.1534/genetics.112.145037 |
[45] |
Malinsky M, Matschiner M, Svardal H. 2021. Dsuite - Fast D-statistics and related admixture evidence from VCF files. Molecular Ecology Resources 21:584−95 doi: 10.1111/1755-0998.13265 |
[46] |
Schrempf D, Minh BQ, De Maio N, von Haeseler A, Kosiol C. 2016. Reversible polymorphism-aware phylogenetic models and their application to tree inference. Journal of Theoretical Biology 407:362−70 doi: 10.1016/j.jtbi.2016.07.042 |
[47] |
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32:268−74 doi: 10.1093/molbev/msu300 |