[1]

El-Sharkawy MA. 2004. Cassava biology and physiology. Plant Molecular Biology 56:481−501

doi: 10.1007/s11103-005-2270-7
[2]

Cock JH. 1982. Cassava: a basic energy source in the tropics. Science 218:755−62

doi: 10.1126/science.7134971
[3]

Rabbi I, Hamblin M, Gedil M, Kulakow P, Ferguson M, et al. 2014. Genetic mapping using genotyping-by-sequencing in the clonally propagated cassava. Crop Science 54:1384−96

doi: 10.2135/cropsci2013.07.0482
[4]

Ceballos H, Hershey C, Iglesias C, Zhang X. 2021. Fifty years of a public cassava breeding program: evolution of breeding objectives, methods, and decision-making processes. Theoretical and Applied Genetics 134:2335−53

doi: 10.1007/s00122-021-03852-9
[5]

Ramu P, Esuma W, Kawuki R, Rabbi IY, Egesi C, et al. 2017. Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation. Nature Genetics 49:959−63

doi: 10.1038/ng.3845
[6]

Wolfe MD, Rabbi IY, Egesi C, Hamblin M, Kawuki R, et al. 2016. Genome-wide association and prediction reveals genetic architecture of cassava mosaic disease resistance and prospects for rapid genetic improvement. The Plant Genome 9:plantgenome2015.11.0118

doi: 10.3835/plantgenome2015.11.011
[7]

Rabbi IY, Kayondo SI, Bauchet G, Yusuf M, Aghogho CI, et al. 2022. Genome-wide association analysis reveals new insights into the genetic architecture of defensive, agro-morphological and quality-related traits in cassava. Plant Molecular Biology 109:195−213

doi: 10.1007/s11103-020-01038-3
[8]

International Cassava Genetic Map Consortium (ICGMC). 2014. High-resolution linkage map and chromosome-scale genome assembly for cassava (Manihot esculenta Crantz) from 10 populations. G3 Genes|Genomes|Genetics 5:133−44

doi: 10.1534/g3.114.015008
[9]

Wolfe MD, Del Carpio DP, Alabi O, Ezenwaka LC, Ikeogu UN, et al. 2017. Prospects for genomic selection in cassava breeding. The Plant Genome 10:plantgenome2017.03.0015

doi: 10.3835/plantgenome2017.03.0015
[10]

Wu Y, Li D, Hu Y, Li H, Ramstein GP, et al. 2023. Phylogenomic discovery of deleterious mutations facilitates hybrid potato breeding. Cell 186:2313−2328.E15

doi: 10.1016/j.cell.2023.04.008
[11]

de Freitas JPX, da Silva Santos V, de Oliveira EJ. 2016. Inbreeding depression in cassava for productive traits. Euphytica 209:137−45

doi: 10.1007/s10681-016-1649-7
[12]

Rojas MC, Pérez JC, Ceballos H, Baena D, Morante N, et al. 2009. Analysis of inbreeding depression in eight S1 cassava families. Crop Science 49:543−48

doi: 10.2135/cropsci2008.07.0419
[13]

Zhang C, Wang P, Tang D, Yang Z, Lu F, et al. 2019. The genetic basis of inbreeding depression in potato. Nature Genetics 51:374−78

doi: 10.1038/s41588-018-0319-1
[14]

Long EM, Romay MC, Ramstein G, Buckler ES, Robbins KR. 2023. Utilizing evolutionary conservation to detect deleterious mutations and improve genomic prediction in cassava. Frontiers in Plant Science 13:1041925

doi: 10.3389/fpls.2022.1041925
[15]

Zhang C, Yang Z, Tang D, Zhu Y, Wang P, et al. 2021. Genome design of hybrid potato. Cell 184:3873−3883.E12

doi: 10.1016/j.cell.2021.06.006
[16]

Shull GH. 1908. The composition of a field of maize. Journal of Heredity os-4(1):296−301

doi: 10.1093/jhered/os-4.1.296
[17]

Duvick DN. 2005. The Contribution of Breeding to Yield Advances in maize (Zea mays L.). Advances in Agronomy 86:83−145

doi: 10.1016/s0065-2113(05)86002-x
[18]

Labroo MR, Endelman JB, Gemenet DC, Werner CR, Gaynor RC, et al. 2023. Clonal diploid and autopolyploid breeding strategies to harness heterosis: insights from stochastic simulation. Theoretical and Applied Genetics 136:147

doi: 10.1007/s00122-023-04377-z
[19]

Food and Agriculture Organization of the United Nations (FAOSTAT). 2023. FAOSTAT Statistical Database. Rome: FAO. www.fao.org/faostat/en/#data/QCL

[20]

Ceballos H, Pérez JC, Joaqui Barandica O, Lenis JI, Morante N, et al. 2016. Cassava breeding I: the value of breeding value. Frontiers in Plant Science 7:1227

doi: 10.3389/fpls.2016.01227
[21]

Ceballos H, Hershey C, Becerra-López-Lavalle LA. 2012. New approaches to cassava breeding. In Plant Breeding Reviews, ed. Janick J. vol. 36. Hoboken, New Jersey: John Wiley & Sons, Inc. pp. 427−504. https://doi.org/10.1002/9781118358566.ch6

[22]

Jansky SH, Charkowski AO, Douches DS, Gusmini G, Richael C, et al. 2016. Reinventing potato as a diploid inbred line–based crop. Crop Science 56:1412−22

doi: 10.2135/cropsci2015.12.0740
[23]

Lindhout P, Meijer D, Schotte T, Hutten RCB, Visser RGF, et al. 2011. Towards F1 hybrid seed potato breeding. Potato Research 54:301−12

doi: 10.1007/s11540-011-9196-z
[24]

Labuschagné I, Louw B, Schmidt K, Sadie A. 2002. Genotypic variation in prolonged dormancy symptoms in apple progenies. HortScience 37:157−63

doi: 10.21273/hortsci.37.1.157
[25]

Jaramillo G, Morante N, Pérez JC, Calle F, Ceballos H, et al. 2005. Diallel analysis in cassava adapted to the midaltitude valleys environment. Crop Science 45:1058−63

doi: 10.2135/cropsci2004.0314
[26]

Ceballos H, Becerra López-Lavalle LA, Calle F, Morante N, Ovalle TM, et al. 2016. Genetic distance and specific combining ability in cassava. Euphytica 210:79−92

doi: 10.1007/s10681-016-1701-7
[27]

Calle F, Perez JC, Gaitán W, Morante N, Ceballos H, et al. 2005. Diallel inheritance of relevant traits in cassava (Manihot esculenta Crantz) adapted to acid-soil savannas. Euphytica 144:177−86

doi: 10.1007/s10681-005-5810-y
[28]

Cach NT, Lenis JI, Perez JC, Morante N, Calle F, et al. 2006. Inheritance of useful traits in cassava grown in subhumid conditions. Plant Breeding 125:177−82

doi: 10.1111/j.1439-0523.2006.01192.x
[29]

Perez JC, Ceballos H, Calle F, Morante N, Gaitán W, et al. 2005. Within-family genetic variation and epistasis in cassava (Manihot esculenta Crantz) adapted to the acid-soils environment. Euphytica 145:77−85

doi: 10.1007/s10681-005-0424-y
[30]

Pérez JC, Ceballos H, Jaramillo G, Morante N, Calle F, et al. 2005. Epistasis in cassava adapted to midaltitude valley environments. Crop Science 45:1491−96

doi: 10.2135/cropsci2004.0600
[31]

Bakare MA, Kayondo SI, Aghogho CI, Wolfe MD, Parkes EY, et al. 2022. Exploring genotype by environment interaction on cassava yield and yield related traits using classical statistical methods. PLoS One 17:e0268189

doi: 10.1371/journal.pone.0268189
[32]

Egesi CN, Ilona P, Ogbe FO, Akoroda M, Dixon A. 2007. Genetic variation and genotype × environment interaction for yield and other agronomic traits in cassava in Nigeria. Agronomy Journal 99:1137−42

doi: 10.2134/agronj2006.0291
[33]

Andrade LRBd, Sousa MBe, Oliveira EJ, Resende MDVd, Azevedo CF. 2019. Cassava yield traits predicted by genomic selection methods. PLoS One 14:e0224920

doi: 10.1371/journal.pone.0224920
[34]

Phumichai C, Aiemnaka P, Nathaisong P, Hunsawattanakul S, Fungfoo P, et al. 2022. Genome-wide association mapping and genomic prediction of yield-related traits and starch pasting properties in cassava. Theoretical and Applied Genetics 135:145−71

doi: 10.1007/s00122-021-03956-2
[35]

Whitford R, Fleury D, Reif JC, Garcia M, Okada T, et al. 2013. Hybrid breeding in wheat: technologies to improve hybrid wheat seed production. Journal of Experimental Botany 64:5411−28

doi: 10.1093/jxb/ert333
[36]

Ireland DS, Wilson DO Jr., Westgate ME, Burris JS, Lauer MJ. 2006. Managing reproductive isolation in hybrid seed corn production. Crop Science 46:1445−55

doi: 10.2135/cropsci2004.0007
[37]

Peng T, Sun X, Mumm RH. 2014. Optimized breeding strategies for multiple trait integration: I. Minimizing linkage drag in single event introgression. Molecular Breeding 33:89−104

doi: 10.1007/s11032-013-9936-7
[38]

Hossain F, Muthusamy V, Pandey N, Vishwakarma AK, Baveja A, et al. 2018. Marker-assisted introgression of opaque2 allele for rapid conversion of elite hybrids into quality protein maize. Journal of Genetics 97:287−98

doi: 10.1007/s12041-018-0914-z
[39]

Collard BCY, MacKill DJ. 2008. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society Series B, Biological Sciences 363:557−72

doi: 10.1098/rstb.2007.2170
[40]

Dwivedi SL, Britt AB, Tripathi L, Sharma S, Upadhyaya HD, et al. 2015. Haploids: constraints and opportunities in plant breeding. Biotechnology Advances 33:812−29

doi: 10.1016/j.biotechadv.2015.07.001
[41]

Welsch R, Arango J, Bär C, Salazar B, Al-Babili S, et al. 2010. Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. The Plant Cell 22:3348−56

doi: 10.1105/tpc.110.077560
[42]

Aiemnaka P, Wongkaew A, Chanthaworn J, Nagashima SK, Boonma S, et al. 2012. Molecular characterization of a spontaneous waxy starch mutation in cassava. Crop Science 52:2121−30

doi: 10.2135/cropsci2012.01.0058
[43]

Schnable PS, Springer NM. 2013. Progress toward understanding heterosis in crop plants. Annual Review of Plant Biology 64:71−88

doi: 10.1146/annurev-arplant-042110-103827
[44]

Lippman ZB, Zamir D. 2007. Heterosis: revisiting the magic. Trends in Genetics 23:60−66

doi: 10.1016/j.tig.2006.12.006
[45]

Labroo MR, Studer AJ, Rutkoski JE. 2021. Heterosis and hybrid crop breeding: a multidisciplinary review. Frontiers in Genetics 12:643761

doi: 10.3389/fgene.2021.643761
[46]

Flint-Garcia SA, Buckler ES, Tiffin P, Ersoz E, Springer NM. 2009. Heterosis is prevalent for multiple traits in diverse maize germplasm. PLoS One 4:e7433

doi: 10.1371/journal.pone.0007433
[47]

Pardo JM, Alvarez E, Becerra Lopez-Lavalle LA, Olaya C, Leiva AM, et al. 2022. Cassava frogskin disease: current knowledge on a re-emerging disease in the americas. Plants 11:1841

doi: 10.3390/plants11141841
[48]

Pardo JM, Chittarath K, Vongphachanh P, Hang LT, Oeurn S, et al. 2023. Cassava witches' broom disease in southeast Asia: a review of its distribution and associated symptoms. Plants 12:2217

doi: 10.3390/plants12112217
[49]

Rey C, Vanderschuren H. 2017. Cassava mosaic and brown streak diseases: current perspectives and beyond. Annual Review of Virology 4:429−52

doi: 10.1146/annurev-virology-101416-041913
[50]

Bandeira e Sousa M, Andrade LRBd, Souza EHd, Alves AAC, de Oliveira EJ. 2021. Reproductive barriers in cassava: factors and implications for genetic improvement. PLoS One 16:e0260576

doi: 10.1371/journal.pone.0260576
[51]

Ramos Abril LN, Pineda LM, Wasek I, Wedzony M, Ceballos H. 2019. Reproductive biology in cassava: stigma receptivity and pollen tube growth. Communicative & Integrative Biology 12:96−111

doi: 10.1080/19420889.2019.1631110
[52]

Charlesworth D, Willis JH. 2009. The genetics of inbreeding depression. Nature Reviews Genetics 10:783−96

doi: 10.1038/nrg2664
[53]

Pineda M, Morante N, Salazar S, Cuásquer J, Hyde PT, et al. 2020. Induction of earlier flowering in cassava through extended photoperiod. Agronomy 10:1273

doi: 10.3390/agronomy10091273
[54]

Rodrmguez EPB, Morante N, Salazar S, Hyde PT, Setter TL, et al. 2023. Flower-inducing technology facilitates speed breeding in cassava. Frontiers in Plant Science 14:1172056

doi: 10.3389/fpls.2023.1172056
[55]

Hyde PT, Guan X, Abreu V, Setter TL. 2020. The anti-ethylene growth regulator silver thiosulfate (STS) increases flower production and longevity in cassava (Manihot esculenta Crantz). Plant Growth Regulation 90:441−53

doi: 10.1007/s10725-019-00542-x
[56]

Hyde PT, Setter TL. 2022. Long-day photoperiod and cool temperature induce flowering in cassava: expression of signaling genes. Frontiers in Plant Science 13:973206

doi: 10.3389/fpls.2022.973206
[57]

Pineda M, Yu B, Tian Y, Morante N, Salazar S, et al. 2020. Effect of pruning young branches on fruit and seed set in cassava. Frontiers in Plant Science 11:1107

doi: 10.3389/fpls.2020.01107
[58]

Fu J, Hao Y, Li H, Reif JC, Chen S, et al. 2022. Integration of genomic selection with doubled-haploid evaluation in hybrid breeding: from GS 1.0 to GS 4.0 and beyond. Molecular Plant 15:577−80

doi: 10.1016/j.molp.2022.02.005
[59]

Strigens A, Schipprack W, Reif JC, Melchinger AE. 2013. Unlocking the genetic diversity of maize landraces with doubled haploids opens new avenues for breeding. PLoS One 8:e57234

doi: 10.1371/journal.pone.0057234
[60]

Böhm J, Schipprack W, Utz HF, Melchinger AE. 2017. Tapping the genetic diversity of landraces in allogamous crops with doubled haploid lines: a case study from European flint maize. Theoretical and Applied Genetics 130:861−73

doi: 10.1007/s00122-017-2856-x
[61]

Wang W, Feng B, Xiao J, Xia Z, Zhou X, et al. 2014. Cassava genome from a wild ancestor to cultivated varieties. Nature Communications 5:5110

doi: 10.1038/ncomms6110
[62]

Windhausen VS, Atlin GN, Hickey JM, Crossa J, Jannink JL, et al. 2012. Effectiveness of genomic prediction of maize hybrid performance in different breeding populations and environments. G3 Genes| Genomes| Genetics 2:1427−36

doi: 10.1534/g3.112.003699
[63]

Zhang A, Pérez-Rodríguez P, San Vicente F, Palacios-Rojas N, Dhliwayo T, et al. 2022. Genomic prediction of the performance of hybrids and the combining abilities for line by tester trials in maize. The Crop Journal 10:109−16

doi: 10.1016/j.cj.2021.04.007
[64]

Xu S, Zhu D, Zhang Q. 2014. Predicting hybrid performance in rice using genomic best linear unbiased prediction. Proceedings of the National Academy of Sciences of the United States of America 111:12456−61

doi: 10.1073/pnas.1413750111
[65]

Labroo MR, Ali J, Aslam MU, de Asis EJ, Dela Paz MA, et al. 2021. Genomic prediction of yield traits in single-cross hybrid rice (Oryza sativa L.). Frontiers in Genetics 12:692870

doi: 10.3389/fgene.2021.692870
[66]

Maulana F, Perumal R, Serba DD, Tesso T. 2023. Genomic prediction of hybrid performance in grain Sorghum (Sorghum bicolor L.). Frontiers in Plant Science 14:1139896

doi: 10.3389/fpls.2023.1139896
[67]

Fonseca JMO, Klein PE, Crossa J, Pacheco A, Perez-Rodriguez P, et al. 2021. Assessing combining abilities, genomic data, and genotype × environment interactions to predict hybrid grain sorghum performance. The Plant Genome 14:e20127

doi: 10.1002/tpg2.20127
[68]

Kawano K. 2003. Thirty years of cassava breeding for productivity—biological and social factors for success. Crop Science 43:1325−35

doi: 10.2135/cropsci2003.1325
[69]

Song L, Endelman JB. 2023. Using haplotype and QTL analysis to fix favorable alleles in diploid potato breeding. The Plant Genome 16:e20339

doi: 10.1002/tpg2.20339
[70]

Hölker AC, Schipprack W, Utz HF, Molenaar WS, Melchinger AE. 2019. Progress for testcross performance within the flint heterotic pool of a public maize breeding program since the onset of hybrid breeding. Euphytica 215:50

doi: 10.1007/s10681-019-2370-0
[71]

Tracy WF, Chandler MA. 2006. The historical and biological basis of the concept of heterotic patterns in corn belt dent maize. In Plant Breeding: the Arnel R Hallauer International Symposium, eds. Lamkey KR, Lee M. UK: Blackwell Publishing. pp. 219−33. https://doi.org/10.1002/9780470752708.ch16