[1]
|
El-Sharkawy MA. 2004. Cassava biology and physiology. Plant Molecular Biology 56:481−501 doi: 10.1007/s11103-005-2270-7
CrossRef Google Scholar
|
[2]
|
Cock JH. 1982. Cassava: a basic energy source in the tropics. Science 218:755−62 doi: 10.1126/science.7134971
CrossRef Google Scholar
|
[3]
|
Rabbi I, Hamblin M, Gedil M, Kulakow P, Ferguson M, et al. 2014. Genetic mapping using genotyping-by-sequencing in the clonally propagated cassava. Crop Science 54:1384−96 doi: 10.2135/cropsci2013.07.0482
CrossRef Google Scholar
|
[4]
|
Ceballos H, Hershey C, Iglesias C, Zhang X. 2021. Fifty years of a public cassava breeding program: evolution of breeding objectives, methods, and decision-making processes. Theoretical and Applied Genetics 134:2335−53 doi: 10.1007/s00122-021-03852-9
CrossRef Google Scholar
|
[5]
|
Ramu P, Esuma W, Kawuki R, Rabbi IY, Egesi C, et al. 2017. Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation. Nature Genetics 49:959−63 doi: 10.1038/ng.3845
CrossRef Google Scholar
|
[6]
|
Wolfe MD, Rabbi IY, Egesi C, Hamblin M, Kawuki R, et al. 2016. Genome-wide association and prediction reveals genetic architecture of cassava mosaic disease resistance and prospects for rapid genetic improvement. The Plant Genome 9:plantgenome2015.11.0118 doi: 10.3835/plantgenome2015.11.011
CrossRef Google Scholar
|
[7]
|
Rabbi IY, Kayondo SI, Bauchet G, Yusuf M, Aghogho CI, et al. 2022. Genome-wide association analysis reveals new insights into the genetic architecture of defensive, agro-morphological and quality-related traits in cassava. Plant Molecular Biology 109:195−213 doi: 10.1007/s11103-020-01038-3
CrossRef Google Scholar
|
[8]
|
International Cassava Genetic Map Consortium (ICGMC). 2014. High-resolution linkage map and chromosome-scale genome assembly for cassava (Manihot esculenta Crantz) from 10 populations. G3 Genes|Genomes|Genetics 5:133−44 doi: 10.1534/g3.114.015008
CrossRef Google Scholar
|
[9]
|
Wolfe MD, Del Carpio DP, Alabi O, Ezenwaka LC, Ikeogu UN, et al. 2017. Prospects for genomic selection in cassava breeding. The Plant Genome 10:plantgenome2017.03.0015 doi: 10.3835/plantgenome2017.03.0015
CrossRef Google Scholar
|
[10]
|
Wu Y, Li D, Hu Y, Li H, Ramstein GP, et al. 2023. Phylogenomic discovery of deleterious mutations facilitates hybrid potato breeding. Cell 186:2313−2328.E15 doi: 10.1016/j.cell.2023.04.008
CrossRef Google Scholar
|
[11]
|
de Freitas JPX, da Silva Santos V, de Oliveira EJ. 2016. Inbreeding depression in cassava for productive traits. Euphytica 209:137−45 doi: 10.1007/s10681-016-1649-7
CrossRef Google Scholar
|
[12]
|
Rojas MC, Pérez JC, Ceballos H, Baena D, Morante N, et al. 2009. Analysis of inbreeding depression in eight S1 cassava families. Crop Science 49:543−48 doi: 10.2135/cropsci2008.07.0419
CrossRef Google Scholar
|
[13]
|
Zhang C, Wang P, Tang D, Yang Z, Lu F, et al. 2019. The genetic basis of inbreeding depression in potato. Nature Genetics 51:374−78 doi: 10.1038/s41588-018-0319-1
CrossRef Google Scholar
|
[14]
|
Long EM, Romay MC, Ramstein G, Buckler ES, Robbins KR. 2023. Utilizing evolutionary conservation to detect deleterious mutations and improve genomic prediction in cassava. Frontiers in Plant Science 13:1041925 doi: 10.3389/fpls.2022.1041925
CrossRef Google Scholar
|
[15]
|
Zhang C, Yang Z, Tang D, Zhu Y, Wang P, et al. 2021. Genome design of hybrid potato. Cell 184:3873−3883.E12 doi: 10.1016/j.cell.2021.06.006
CrossRef Google Scholar
|
[16]
|
Shull GH. 1908. The composition of a field of maize. Journal of Heredity os-4(1):296−301 doi: 10.1093/jhered/os-4.1.296
CrossRef Google Scholar
|
[17]
|
Duvick DN. 2005. The Contribution of Breeding to Yield Advances in maize (Zea mays L.). Advances in Agronomy 86:83−145 doi: 10.1016/s0065-2113(05)86002-x
CrossRef Google Scholar
|
[18]
|
Labroo MR, Endelman JB, Gemenet DC, Werner CR, Gaynor RC, et al. 2023. Clonal diploid and autopolyploid breeding strategies to harness heterosis: insights from stochastic simulation. Theoretical and Applied Genetics 136:147 doi: 10.1007/s00122-023-04377-z
CrossRef Google Scholar
|
[19]
|
Food and Agriculture Organization of the United Nations (FAOSTAT). 2023. FAOSTAT Statistical Database. Rome: FAO. www.fao.org/faostat/en/#data/QCL
|
[20]
|
Ceballos H, Pérez JC, Joaqui Barandica O, Lenis JI, Morante N, et al. 2016. Cassava breeding I: the value of breeding value. Frontiers in Plant Science 7:1227 doi: 10.3389/fpls.2016.01227
CrossRef Google Scholar
|
[21]
|
Ceballos H, Hershey C, Becerra-López-Lavalle LA. 2012. New approaches to cassava breeding. In Plant Breeding Reviews, ed. Janick J. vol. 36. Hoboken, New Jersey: John Wiley & Sons, Inc. pp. 427−504. https://doi.org/10.1002/9781118358566.ch6
|
[22]
|
Jansky SH, Charkowski AO, Douches DS, Gusmini G, Richael C, et al. 2016. Reinventing potato as a diploid inbred line–based crop. Crop Science 56:1412−22 doi: 10.2135/cropsci2015.12.0740
CrossRef Google Scholar
|
[23]
|
Lindhout P, Meijer D, Schotte T, Hutten RCB, Visser RGF, et al. 2011. Towards F1 hybrid seed potato breeding. Potato Research 54:301−12 doi: 10.1007/s11540-011-9196-z
CrossRef Google Scholar
|
[24]
|
Labuschagné I, Louw B, Schmidt K, Sadie A. 2002. Genotypic variation in prolonged dormancy symptoms in apple progenies. HortScience 37:157−63 doi: 10.21273/hortsci.37.1.157
CrossRef Google Scholar
|
[25]
|
Jaramillo G, Morante N, Pérez JC, Calle F, Ceballos H, et al. 2005. Diallel analysis in cassava adapted to the midaltitude valleys environment. Crop Science 45:1058−63 doi: 10.2135/cropsci2004.0314
CrossRef Google Scholar
|
[26]
|
Ceballos H, Becerra López-Lavalle LA, Calle F, Morante N, Ovalle TM, et al. 2016. Genetic distance and specific combining ability in cassava. Euphytica 210:79−92 doi: 10.1007/s10681-016-1701-7
CrossRef Google Scholar
|
[27]
|
Calle F, Perez JC, Gaitán W, Morante N, Ceballos H, et al. 2005. Diallel inheritance of relevant traits in cassava (Manihot esculenta Crantz) adapted to acid-soil savannas. Euphytica 144:177−86 doi: 10.1007/s10681-005-5810-y
CrossRef Google Scholar
|
[28]
|
Cach NT, Lenis JI, Perez JC, Morante N, Calle F, et al. 2006. Inheritance of useful traits in cassava grown in subhumid conditions. Plant Breeding 125:177−82 doi: 10.1111/j.1439-0523.2006.01192.x
CrossRef Google Scholar
|
[29]
|
Perez JC, Ceballos H, Calle F, Morante N, Gaitán W, et al. 2005. Within-family genetic variation and epistasis in cassava (Manihot esculenta Crantz) adapted to the acid-soils environment. Euphytica 145:77−85 doi: 10.1007/s10681-005-0424-y
CrossRef Google Scholar
|
[30]
|
Pérez JC, Ceballos H, Jaramillo G, Morante N, Calle F, et al. 2005. Epistasis in cassava adapted to midaltitude valley environments. Crop Science 45:1491−96 doi: 10.2135/cropsci2004.0600
CrossRef Google Scholar
|
[31]
|
Bakare MA, Kayondo SI, Aghogho CI, Wolfe MD, Parkes EY, et al. 2022. Exploring genotype by environment interaction on cassava yield and yield related traits using classical statistical methods. PLoS One 17:e0268189 doi: 10.1371/journal.pone.0268189
CrossRef Google Scholar
|
[32]
|
Egesi CN, Ilona P, Ogbe FO, Akoroda M, Dixon A. 2007. Genetic variation and genotype × environment interaction for yield and other agronomic traits in cassava in Nigeria. Agronomy Journal 99:1137−42 doi: 10.2134/agronj2006.0291
CrossRef Google Scholar
|
[33]
|
Andrade LRBd, Sousa MBe, Oliveira EJ, Resende MDVd, Azevedo CF. 2019. Cassava yield traits predicted by genomic selection methods. PLoS One 14:e0224920 doi: 10.1371/journal.pone.0224920
CrossRef Google Scholar
|
[34]
|
Phumichai C, Aiemnaka P, Nathaisong P, Hunsawattanakul S, Fungfoo P, et al. 2022. Genome-wide association mapping and genomic prediction of yield-related traits and starch pasting properties in cassava. Theoretical and Applied Genetics 135:145−71 doi: 10.1007/s00122-021-03956-2
CrossRef Google Scholar
|
[35]
|
Whitford R, Fleury D, Reif JC, Garcia M, Okada T, et al. 2013. Hybrid breeding in wheat: technologies to improve hybrid wheat seed production. Journal of Experimental Botany 64:5411−28 doi: 10.1093/jxb/ert333
CrossRef Google Scholar
|
[36]
|
Ireland DS, Wilson DO Jr., Westgate ME, Burris JS, Lauer MJ. 2006. Managing reproductive isolation in hybrid seed corn production. Crop Science 46:1445−55 doi: 10.2135/cropsci2004.0007
CrossRef Google Scholar
|
[37]
|
Peng T, Sun X, Mumm RH. 2014. Optimized breeding strategies for multiple trait integration: I. Minimizing linkage drag in single event introgression. Molecular Breeding 33:89−104 doi: 10.1007/s11032-013-9936-7
CrossRef Google Scholar
|
[38]
|
Hossain F, Muthusamy V, Pandey N, Vishwakarma AK, Baveja A, et al. 2018. Marker-assisted introgression of opaque2 allele for rapid conversion of elite hybrids into quality protein maize. Journal of Genetics 97:287−98 doi: 10.1007/s12041-018-0914-z
CrossRef Google Scholar
|
[39]
|
Collard BCY, MacKill DJ. 2008. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philosophical Transactions of the Royal Society Series B, Biological Sciences 363:557−72 doi: 10.1098/rstb.2007.2170
CrossRef Google Scholar
|
[40]
|
Dwivedi SL, Britt AB, Tripathi L, Sharma S, Upadhyaya HD, et al. 2015. Haploids: constraints and opportunities in plant breeding. Biotechnology Advances 33:812−29 doi: 10.1016/j.biotechadv.2015.07.001
CrossRef Google Scholar
|
[41]
|
Welsch R, Arango J, Bär C, Salazar B, Al-Babili S, et al. 2010. Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. The Plant Cell 22:3348−56 doi: 10.1105/tpc.110.077560
CrossRef Google Scholar
|
[42]
|
Aiemnaka P, Wongkaew A, Chanthaworn J, Nagashima SK, Boonma S, et al. 2012. Molecular characterization of a spontaneous waxy starch mutation in cassava. Crop Science 52:2121−30 doi: 10.2135/cropsci2012.01.0058
CrossRef Google Scholar
|
[43]
|
Schnable PS, Springer NM. 2013. Progress toward understanding heterosis in crop plants. Annual Review of Plant Biology 64:71−88 doi: 10.1146/annurev-arplant-042110-103827
CrossRef Google Scholar
|
[44]
|
Lippman ZB, Zamir D. 2007. Heterosis: revisiting the magic. Trends in Genetics 23:60−66 doi: 10.1016/j.tig.2006.12.006
CrossRef Google Scholar
|
[45]
|
Labroo MR, Studer AJ, Rutkoski JE. 2021. Heterosis and hybrid crop breeding: a multidisciplinary review. Frontiers in Genetics 12:643761 doi: 10.3389/fgene.2021.643761
CrossRef Google Scholar
|
[46]
|
Flint-Garcia SA, Buckler ES, Tiffin P, Ersoz E, Springer NM. 2009. Heterosis is prevalent for multiple traits in diverse maize germplasm. PLoS One 4:e7433 doi: 10.1371/journal.pone.0007433
CrossRef Google Scholar
|
[47]
|
Pardo JM, Alvarez E, Becerra Lopez-Lavalle LA, Olaya C, Leiva AM, et al. 2022. Cassava frogskin disease: current knowledge on a re-emerging disease in the americas. Plants 11:1841 doi: 10.3390/plants11141841
CrossRef Google Scholar
|
[48]
|
Pardo JM, Chittarath K, Vongphachanh P, Hang LT, Oeurn S, et al. 2023. Cassava witches' broom disease in southeast Asia: a review of its distribution and associated symptoms. Plants 12:2217 doi: 10.3390/plants12112217
CrossRef Google Scholar
|
[49]
|
Rey C, Vanderschuren H. 2017. Cassava mosaic and brown streak diseases: current perspectives and beyond. Annual Review of Virology 4:429−52 doi: 10.1146/annurev-virology-101416-041913
CrossRef Google Scholar
|
[50]
|
Bandeira e Sousa M, Andrade LRBd, Souza EHd, Alves AAC, de Oliveira EJ. 2021. Reproductive barriers in cassava: factors and implications for genetic improvement. PLoS One 16:e0260576 doi: 10.1371/journal.pone.0260576
CrossRef Google Scholar
|
[51]
|
Ramos Abril LN, Pineda LM, Wasek I, Wedzony M, Ceballos H. 2019. Reproductive biology in cassava: stigma receptivity and pollen tube growth. Communicative & Integrative Biology 12:96−111 doi: 10.1080/19420889.2019.1631110
CrossRef Google Scholar
|
[52]
|
Charlesworth D, Willis JH. 2009. The genetics of inbreeding depression. Nature Reviews Genetics 10:783−96 doi: 10.1038/nrg2664
CrossRef Google Scholar
|
[53]
|
Pineda M, Morante N, Salazar S, Cuásquer J, Hyde PT, et al. 2020. Induction of earlier flowering in cassava through extended photoperiod. Agronomy 10:1273 doi: 10.3390/agronomy10091273
CrossRef Google Scholar
|
[54]
|
Rodrmguez EPB, Morante N, Salazar S, Hyde PT, Setter TL, et al. 2023. Flower-inducing technology facilitates speed breeding in cassava. Frontiers in Plant Science 14:1172056 doi: 10.3389/fpls.2023.1172056
CrossRef Google Scholar
|
[55]
|
Hyde PT, Guan X, Abreu V, Setter TL. 2020. The anti-ethylene growth regulator silver thiosulfate (STS) increases flower production and longevity in cassava (Manihot esculenta Crantz). Plant Growth Regulation 90:441−53 doi: 10.1007/s10725-019-00542-x
CrossRef Google Scholar
|
[56]
|
Hyde PT, Setter TL. 2022. Long-day photoperiod and cool temperature induce flowering in cassava: expression of signaling genes. Frontiers in Plant Science 13:973206 doi: 10.3389/fpls.2022.973206
CrossRef Google Scholar
|
[57]
|
Pineda M, Yu B, Tian Y, Morante N, Salazar S, et al. 2020. Effect of pruning young branches on fruit and seed set in cassava. Frontiers in Plant Science 11:1107 doi: 10.3389/fpls.2020.01107
CrossRef Google Scholar
|
[58]
|
Fu J, Hao Y, Li H, Reif JC, Chen S, et al. 2022. Integration of genomic selection with doubled-haploid evaluation in hybrid breeding: from GS 1.0 to GS 4.0 and beyond. Molecular Plant 15:577−80 doi: 10.1016/j.molp.2022.02.005
CrossRef Google Scholar
|
[59]
|
Strigens A, Schipprack W, Reif JC, Melchinger AE. 2013. Unlocking the genetic diversity of maize landraces with doubled haploids opens new avenues for breeding. PLoS One 8:e57234 doi: 10.1371/journal.pone.0057234
CrossRef Google Scholar
|
[60]
|
Böhm J, Schipprack W, Utz HF, Melchinger AE. 2017. Tapping the genetic diversity of landraces in allogamous crops with doubled haploid lines: a case study from European flint maize. Theoretical and Applied Genetics 130:861−73 doi: 10.1007/s00122-017-2856-x
CrossRef Google Scholar
|
[61]
|
Wang W, Feng B, Xiao J, Xia Z, Zhou X, et al. 2014. Cassava genome from a wild ancestor to cultivated varieties. Nature Communications 5:5110 doi: 10.1038/ncomms6110
CrossRef Google Scholar
|
[62]
|
Windhausen VS, Atlin GN, Hickey JM, Crossa J, Jannink JL, et al. 2012. Effectiveness of genomic prediction of maize hybrid performance in different breeding populations and environments. G3 Genes| Genomes| Genetics 2:1427−36 doi: 10.1534/g3.112.003699
CrossRef Google Scholar
|
[63]
|
Zhang A, Pérez-Rodríguez P, San Vicente F, Palacios-Rojas N, Dhliwayo T, et al. 2022. Genomic prediction of the performance of hybrids and the combining abilities for line by tester trials in maize. The Crop Journal 10:109−16 doi: 10.1016/j.cj.2021.04.007
CrossRef Google Scholar
|
[64]
|
Xu S, Zhu D, Zhang Q. 2014. Predicting hybrid performance in rice using genomic best linear unbiased prediction. Proceedings of the National Academy of Sciences of the United States of America 111:12456−61 doi: 10.1073/pnas.1413750111
CrossRef Google Scholar
|
[65]
|
Labroo MR, Ali J, Aslam MU, de Asis EJ, Dela Paz MA, et al. 2021. Genomic prediction of yield traits in single-cross hybrid rice (Oryza sativa L.). Frontiers in Genetics 12:692870 doi: 10.3389/fgene.2021.692870
CrossRef Google Scholar
|
[66]
|
Maulana F, Perumal R, Serba DD, Tesso T. 2023. Genomic prediction of hybrid performance in grain Sorghum (Sorghum bicolor L.). Frontiers in Plant Science 14:1139896 doi: 10.3389/fpls.2023.1139896
CrossRef Google Scholar
|
[67]
|
Fonseca JMO, Klein PE, Crossa J, Pacheco A, Perez-Rodriguez P, et al. 2021. Assessing combining abilities, genomic data, and genotype × environment interactions to predict hybrid grain sorghum performance. The Plant Genome 14:e20127 doi: 10.1002/tpg2.20127
CrossRef Google Scholar
|
[68]
|
Kawano K. 2003. Thirty years of cassava breeding for productivity—biological and social factors for success. Crop Science 43:1325−35 doi: 10.2135/cropsci2003.1325
CrossRef Google Scholar
|
[69]
|
Song L, Endelman JB. 2023. Using haplotype and QTL analysis to fix favorable alleles in diploid potato breeding. The Plant Genome 16:e20339 doi: 10.1002/tpg2.20339
CrossRef Google Scholar
|
[70]
|
Hölker AC, Schipprack W, Utz HF, Molenaar WS, Melchinger AE. 2019. Progress for testcross performance within the flint heterotic pool of a public maize breeding program since the onset of hybrid breeding. Euphytica 215:50 doi: 10.1007/s10681-019-2370-0
CrossRef Google Scholar
|
[71]
|
Tracy WF, Chandler MA. 2006. The historical and biological basis of the concept of heterotic patterns in corn belt dent maize. In Plant Breeding: the Arnel R Hallauer International Symposium, eds. Lamkey KR, Lee M. UK: Blackwell Publishing. pp. 219−33. https://doi.org/10.1002/9780470752708.ch16
|