[1]

Fang Y, Xiong L. 2015. General mechanisms of drought response and their application in drought resistance improvement in plants. Cellular and Molecular Life Sciences 72:673−89

doi: 10.1007/s00018-014-1767-0
[2]

Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, et al. 2016. Transcription factors and plants response to drought stress: current understanding and future directions. Frontiers in Plant Science 7:1029

doi: 10.3389/fpls.2016.01029
[3]

Jiang SY, Sevugan M, Ramachandran S. 2018. Valine-glutamine (VQ) motif coding genes are ancient and non-plant-specifc with comprehensive expression regulation by various biotic and abiotic stresses. BMC Genomics 19:342

doi: 10.1186/s12864-018-4733-7
[4]

Morikawa K, Shiina T, Murakami S, Toyoshima Y. 2002. Novel nucleus-encoded proteins interacting with a plastid sigma factor, Sig1, in Arabidopsis thaliana. FEBS Letters 514:300−04

doi: 10.1016/S0014-5793(02)02388-8
[5]

Kim DY, Kwon SI, Choi C, Lee H, Ahn I, et al. 2013. Expression analysis of rice VQ genes in response to biotic and abiotic stresses. Gene 529:208−14

doi: 10.1016/j.gene.2013.08.023
[6]

Song W, Zhao H, Zhang X, Lei L, Lai J. 2015. Genome-wide identification of VQ motif-containing proteins and their expression profiles under abiotic stresses in maize. Frontiers in Plant Science 6:1177

doi: 10.3389/fpls.2015.01177
[7]

Wang M, Vannozzi A, Wang G, Zhong Y, Corso M, et al. 2015. A comprehensive survey of the grapevine VQ gene family and its transcriptional correlation with WRKY proteins. Frontiers in Plant Science 6:417

doi: 10.3389/fpls.2015.00417
[8]

Zhang G, Wang F, Li J, Ding Q, Zhang Y, et al. 2015. Genomewide identifcation and analysis of the VQ motif-containing protein family in Chinese cabbage (Brassica rapa L. ssp. Pekinensis). International Journal of Molecular Sciences 16:28683−704

doi: 10.3390/ijms161226127
[9]

Cheng Y, Zhou Y, Yang Y, Chi YJ, Zhou J, et al. 2012. Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors. Plant Physiology 159:810−25

doi: 10.1104/pp.112.196816
[10]

Li Y, Jing Y, Li J, Xu G, Lin R. 2014. Arabidopsis VQ MOTIFCONTAINING PROTEIN29 represses seedling deetiolation by interacting with PHYTOCHROME-INTERACTING FACTOR1. Plant Physiology 164:2068−80

doi: 10.1104/pp.113.234492
[11]

Ali MRM, Uemura T, Ramadan A, Adachi K, Nemoto K, et al. 2019. The ring-type E3 ubiquitin ligase JUL1 targets the VQ-motif protein JAV1 to coordinate jasmonate signaling. Plant Physiology 179:1273−84

doi: 10.1104/pp.18.00715
[12]

Yuan G, Qian Y, Ren Y, Guan Y, Wu X, et al. 2021. The role of plant-specifc VQ motif-containing proteins: an ever-thickening plot. Plant Physiology and Biochemistry 159:12−16

doi: 10.1016/j.plaphy.2020.12.005
[13]

Zhu H, Zhou Y, Zhai H, He S, Zhao N, et al. 2020. A novel sweetpotato WRKY transcription factor, IbWRKY2, positively regulates drought and salt tolerance in transgenic Arabidopsis. Biomolecules 10:506

doi: 10.3390/biom10040506
[14]

Zhang L, Zheng Y, Xiong X, Li H, Zhang X, et al. 2023. The wheat VQ motif-containing protein TaVQ4-D positively regulates drought tolerance in transgenic plants. Journal of Experimental Botany 74:5591−605

doi: 10.1093/jxb/erad280
[15]

Wang A, Garcia D, Zhang H, Feng K, Chaudhury A, et al. 2010. The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis. The Plant Journal 63:670−79

doi: 10.1111/j.1365-313X.2010.04271.x
[16]

Hu Y, Chen L, Wang H, Zhang L, Wang F, et al. 2013. Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. The Plant Journal 74:730−45

doi: 10.1111/tpj.12159
[17]

Lei R, Li X, Ma Z, Lv Y, Hu Y, et al. 2017. Arabidopsis WRKY2 and WRKY34 transcription factors interact with VQ20 protein to modulate pollen development and function. The Plant Journal 91:962−76

doi: 10.1111/tpj.13619
[18]

Petersen K, Qiu JL, Lütje J, Fiil BK, Hansen S, et al. 2010. Arabidopsis MKS1 is involved in basal immunity and requires an intact N-terminal domain for proper function. PLoS ONE 5:e14364

doi: 10.1371/journal.pone.0014364
[19]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−08

doi: 10.1006/meth.2001.1262
[20]

Graham N, Amna M, Christine HF. 2014. The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiology 164:1636−48

doi: 10.1104/pp.113.233478
[21]

AghaKouchak A, Feldman D, Hoerling M, Huxman T, Lund J. 2015. Water and climate: recognize anthropogenic drought. Nature 524:409−11

doi: 10.1038/524409a
[22]

Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K. 2014. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Frontiers in Plant Science 5:170

doi: 10.3389/fpls.2014.00170
[23]

Manna M, Thakur T, Chirom O, Mandlik R, Deshmukh R, et al. 2021. Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. Physiologia Plantarum 172:847−68

doi: 10.1111/ppl.13268
[24]

Li J, Luan Y, Liu Z. 2015. Overexpression of SpWRKY1 promotes resistance to Phytophthora nicotianae and tolerance to salt and drought stress in transgenic tobacco. Physiologia Plantarum 155:248−66

doi: 10.1111/ppl.12315
[25]

Jia H, Wang C, Wang F, Liu S, Li G, et al. 2015. GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana. PLoS ONE 10:e0120646

doi: 10.1371/journal.pone.0120646
[26]

Jing Y, Lin R. 2015. The VQ motif-containing protein family of plantspecific transcriptional regulators. Plant Physiology 169:371−78

doi: 10.1104/pp.15.00788
[27]

Chen J, Wang H, Li Y, Pan J, Hu Y, et al. 2018. Arabidopsis VQ10 interacts with WRKY8 to modulate basal defense against Botrytis cinerea. Journal of Integrative Plant Biology 60:956−69

doi: 10.1111/jipb.12664
[28]

He Q, He M, Zhang X, Zhang X, Zhang W, et al. 2023. RsVQ4-RsWRKY26 module positively regulates thermotolerance by activating RsHSP70–20 transcription in radish (Raphanus sativus L.). Environmental and Experimental Botany 214:105467

doi: 10.1016/j.envexpbot.2023.105467
[29]

Pecher P, Eschen-Lippold L, Herklotz S, Kuhle K, Naumann K, et al. 2014. The Arabidopsis thaliana mitogen-activated protein kinases MPK3 and MPK6 target a subclass of 'VQ-motif'-containing proteins to regulate immune responses. New Phytologist 203:592−606

doi: 10.1111/nph.12817
[30]

Tian J, Zhang J, Francis F. 2023. Large-scale identifcation and characterization analysis of VQ family genes in plants, especially gymnosperms. International Journal of Molecular Sciences 24:14968

doi: 10.3390/ijms241914968
[31]

León J, Gayubas B, Castillo MC. 2020. Valine-glutamine proteins in plant responses to oxygen and nitric oxide. Frontiers in Plant Science 11:632678

doi: 10.3389/fpls.2020.632678
[32]

Cheng X, Yao H, Cheng Z, Tian B, Gao C, et al. 2022. The wheat gene TaVQ14 confers salt and drought tolerance in transgenic Arabidopsis thaliana plants. Frontiers in Plant Science 13:870586

doi: 10.3389/fpls.2022.870586
[33]

Zhao D, Luan Y, Shi W, Zhang X, Meng J, et al. 2021. A Paeonia ostii caffeoyl-CoA O-methyltransferase confers drought stress tolerance by promoting lignin synthesis and ROS scavenging. Plant Science 303:110765

doi: 10.1016/j.plantsci.2020.110765
[34]

Luan Y, Chen Z, Meng J, Tao J, Zhao D. 2023. PoWRKY17 promotes drought tolerance in Paeonia ostii by modulating lignin accumulation. Industrial Crops and Products 204:117228

doi: 10.1016/j.indcrop.2023.117228