[1]

Embrandiri A, Singh RP, Ibrahim MH. 2013. Biochemical, morphological, and yield responses of lady's finger plants to varying ratios of palm oil mill waste (decanter cake) application as a bio-fertilizer. International Journal of Recycling of Organic Waste in Agriculture 2:7

doi: 10.1186/2251-7715-2-1
[2]

Embrandiri A, Rupani PF, Ismail SA, Singh RP, Ibrahim MH, et al. 2016. The effect of oil palm decanter cake on the accumulation of nutrients and the stomatal opening of Solanum melongena (brinjal) plants. International Journal of Recycling of Organic Waste in Agriculture 5:141−47

doi: 10.1007/s40093-016-0124-8
[3]

Visvini L, Latifah O, Ahmed OH, Kurk WJ. 2022. Frass Production from black soldier fly larvae reared on palm oil wastes. IOP Conference Series: Earth and Environmental Science 995:012012

doi: 10.1088/1755-1315/995/1/012012
[4]

Ng KL, Mohd Khan A. 2012. Enzymatic preparation of palm kernel expeller protein hydrolysate (PKEPH). International Food Research Journal 19(2):721−25

[5]

Koda E, Miszkowska A, Sieczka A. 2017. Levels of organic pollution indicators in groundwater at the old landfill and waste management site. Applied Sciences 7(6):638

doi: 10.3390/app7060638
[6]

Lopes IG, Yong JW, Lalander C. 2022. Frass derived from black soldier fly larvae treatment of biodegradable wastes. A critical review and future perspectives. Waste Management 142:65−76

doi: 10.1016/j.wasman.2022.02.007
[7]

Singh A, Kumari K. 2019. An inclusive approach for organic waste treatment and valorisation using Black Soldier Fly larvae: A review. Journal of Environmental Management 251:109569

doi: 10.1016/j.jenvman.2019.109569
[8]

Meneguz M, Schiavone A, Gai F, Dama A, Lussiana C, et al. 2018. Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly (Hermetia illucens) larvae. Journal of the Science of Food and Agriculture 98(15):5776−84

doi: 10.1002/jsfa.9127
[9]

Liu X, Chen X, Wang H, Yang Q, ur Rehman K, et al. 2017. Dynamic changes of nutrient composition throughout the entire life cycle of black soldier fly. Plos One 12(8):e0182601

doi: 10.1371/journal.pone.0182601
[10]

Wong CY, Rosli SS, Uemura Y, Ho YC, Leejeerajumnean A, et al. 2019. Potential protein and biodiesel sources from black soldier fly larvae: insights of larval harvesting instar and fermented feeding medium. Energies 12(8):1570

doi: 10.3390/en12081570
[11]

Tomberlin JK, Sheppard DC, Joyce JA. 2002. Selected life-history traits of black soldier flies (Diptera: Stratiomyidae) reared on three artificial diets. Annals of the Entomological Society of America 95(3):379−86

doi: 10.1603/0013-8746(2002)095[0379:SLHTOB]2.0.CO;2
[12]

Amrul NF, Kabir Ahmad I, Ahmad Basri NE, Suja F, Abdul Jalil NA, et al. 2022. A review of organic waste treatment using black soldier fly (Hermetia illucens). Sustainability 14(8):4565

doi: 10.3390/su14084565
[13]

Raga R, Cossu R, Heerenklage J, Pivato A, Ritzkowski M. 2015. Landfill aeration for emission control before and during landfill mining. Waste Management 46:420−29

doi: 10.1016/j.wasman.2015.09.037
[14]

Cheng JYK, Chiu SLH, Lo IMC. 2017. Effects of moisture content of food waste on residue separation, larval growth, and larval survival in black soldier fly bioconversion. Waste Management 67:315−23

doi: 10.1016/j.wasman.2017.05.046
[15]

Diener S, Studt Solano NM, Roa Gutiérrez F, Zurbrügg C, Tockner K. 2011. Biological treatment of municipal organic waste using black soldier larvae. Waste and Biomass Valorization 2:357−63

doi: 10.1007/s12649-011-9079-1
[16]

Beesigamukama D, Mochoge B, Korir NK, Fiaboe KKM, Nakimbugwe D, et al. 2020. Exploring black soldier fly frass as novel fertilizer for improved growth, yield, and nitrogen use efficiency of maize under field conditions. Frontiers in Plant Science 11:574592

doi: 10.3389/fpls.2020.574592
[17]

Müller A, Wolf D, Gutzeit HO. 2017. The black soldier fly, Hermetia illucens – a promising source for sustainable production of proteins, lipids, and bioactive substances. Zeitschrift für Naturforschung C 72(9−10):351−63

doi: 10.1515/znc-2017-0030
[18]

Chen J, Hou D, Pang W, Nowar EE, Tomberlin JK, et al. 2019. Effect of moisture content on greenhouse gas and NH3 emissions from pig manure converted by black soldier fly. Science of the Total Environment 697:133840

doi: 10.1016/j.scitotenv.2019.133840
[19]

Romano N, Datta SN, Sinha AK, Pande GSJ. 2023. Partially replacing synthetic fertilizer with black soldier fly (Hermetia illucens) larvae frass enhances kale (Brassica oleracea var. sabellica) production. Technology in Horticulture 3:8

doi: 10.48130/tih-2023-0008
[20]

Pan Z, Andrade D, Segal M, Wimberley J, McKinney N, et al. 2010. Uncertainty in future soil carbon trends at a central US site under an ensemble of GCM scenario climates. Ecological Modelling 221(5):876−81

doi: 10.1016/j.ecolmodel.2009.11.013
[21]

Bortolini S, Macavei LI, Saadoun JH, Foca G, Ulrici A, et al. 2020. Hermetia illucens (L.) larvae as chicken manure management tool for circular economy. Journal of Cleaner Production 262:121289

doi: 10.1016/j.jclepro.2020.121289
[22]

Vickerson A, Radley R, Marchant B, Kaulfuss O, Kabaluk T. 2017. Hermetia illucens frass production and use in plant nutrition and pest management. United States Patent No. 9844223 B2.

[23]

Surendra KC, Tomberlin JK, van Huis A, Cammack JA, Heckmann LHL, et al. 2020. Rethinking organic wastes bioconversion: Evaluating the potential of the black soldier fly (Hermetia illucens (L.)) (Diptera: Stratiomyidae) (BSF). Waste Management 117:58−80

doi: 10.1016/j.wasman.2020.07.050
[24]

Janssen RH, Vincken JP, van den Broek LAM, Fogliano V, Lakemond CMM. 2017. Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. Journal of Agricultural and Food Chemistry 65(11):2275−78

doi: 10.1021/acs.jafc.7b00471
[25]

Hassan MH, Latifah O, Ahmed OH, Roslim MHM, Perumal M. 2023. Black soldier fly larvae frass production for managing water hyacinth encroachment. International Journal of Agriculture, Forestry and Plantation 13:75−79

[26]

Chiam Z, Lee JTE, Tan JKN, Song S, Arora S, et al. 2021. Evaluating the potential of okara-derived black soldier fly larval frass as a soil amendment. Journal of Environmental Management 286:112163

doi: 10.1016/j.jenvman.2021.112163
[27]

Klammsteiner T, Turan V, Fernández-Delgado Juárez M, Oberegger S, Insam H. 2020. Suitability of black soldier fly frass as soil amendment and implication for organic waste hygienization. Agronomy 10(10):1578

doi: 10.3390/agronomy10101578
[28]

Gärttling D, Schulz H. 2022. Compilation of black soldier fly frass analyses. Journal of Soil Science and Plant Nutrition 22:937−43

doi: 10.1007/s42729-021-00703-w
[29]

Fischer H, Romano N. 2020. Fruit, vegetable, and starch mixtures on the nutritional quality of black soldier fly (Hermetia illucens) larvae and resulting frass. Journal of Insects as Food and Feed 7(3):319−27

doi: 10.3920/jiff2020.0100
[30]

Shamshuddin J, Anda M. 2012. Enhancing the productivity of Ultisols and Oxisols in Malaysia using basalt and/or compost. Pedologist 55(3):382−91

[31]

Johan PD, Ahmed OH, Omar L, Hasbullah NA. 2021. Charcoal and sago bark ash on pH buffering capacity and phosphorus leaching. Agronomy 11(11):2223

doi: 10.3390/agronomy11112223
[32]

Hamidi NH, Ahmed OH, Omar L, Ch’ng HY, Johan PD, et al. 2021. Acid soils nitrogen leaching and buffering capacity mitigation using charcoal and sago bark ash. Sustainability 13(21):11808

doi: 10.3390/su132111808
[33]

Latifah O, Ahmed OH, Majid NMA. 2018. Soil pH buffering capacity and nitrogen availability following compost application in a tropical acid soil. Compost Science & Utilization 26(1):1−15

doi: 10.1080/1065657X.2017.1329039
[34]

Garcıa-Gil JC, Ceppi SB, Velasco MI, Polo A, Senesi N. 2004. Long-term effects of amendment with municipal solid waste compost on the elemental and acidic functional group composition and pH-buffer capacity of soil humic acids. Geoderma 121(1−2):135−42

doi: 10.1016/j.geoderma.2003.11.004
[35]

Peech M. 1965. Hydrogen-ion activity. In Methods of soil analysis part 2 chemical and microbiological properties, ed. Black CA. Vol. 9. Madison, Wisconsin: American Society of Agronomy. pp. 914−26. https://doi.org/10.2134/agronmonogr9.2.c9

[36]

Cotennie A. 1980. Soil and plant testing as a basis of fertilizer recommendation. Food and Agriculture Organization Soils Bulletin 38:70−73

[37]

Bremner JM. 1965. Total nitrogen. In Methods of soil analysis: part 2 chemical and microbiological properties, ed. Black CA. Vol. 9. Madison, Wisconsin: American Society of Agronomy. pp. 1149−78. https://doi.org/10.2134/agronmonogr9.2.c32

[38]

Keeney DR, Nelson DW. 1982. Nitrogen-inorganic forms. In Methods of soil analysis, part 2 chemical and microbiological properties, ed. Page AL. Madison, Wisconsin: American Society of Agronomy. pp. 643−93. https://doi.org/10.2134/agronmonogr9.2.2ed.c33

[39]

Tan KH. 2005. Soil sampling, preparation, and analysis. Second Edition. Boca Raton, Florida: CRC Press. https://doi.org/10.1201/9781482274769

[40]

Cai M, Zhang K, Zhong W, Liu N, Wu X, et al. 2019. Bioconversion-composting of golden needle mushroom (Flammulina velutipes) root waste by black soldier fly (Hermetia illucens, Diptera: Stratiomyidae) larvae to obtain added-value biomass and fertilizer. Waste and Biomass Valorization 10:265−73

doi: 10.1007/s12649-017-0063-2
[41]

Zucconi F. 1981. Evaluating toxicity of immature compost. Biocycle 22(2):54−57

[42]

Costello RC, Sullivan DM. 2014. Determining the pH buffering capacity of compost via titration with dilute sulfuric acid. Waste and Biomass Valorization 5:505−13

doi: 10.1007/s12649-013-9279-y
[43]

Kim CH, Ryu J, Lee J, Ko K, Lee JY, et al. 2021. Use of black soldier fly larvae for food waste treatment and energy production in Asian countries: a review. Processes 9(1):161

doi: 10.3390/pr9010161
[44]

Zhang J, Huang L, He J, Tomberlin JK, Li J, et al. 2010. An artificial light source influences mating and oviposition of black soldier flies, Hermetia illucens. Journal of Insect Science 10(1):202

doi: 10.1673/031.010.20201
[45]

Pang W, Hou D, Chen J, Nowar EE, Li Z, et al. 2020. Reducing greenhouse gas emissions and enhancing carbon and nitrogen conversion in food wastes by the black soldier fly. Journal of Environmental Management 260:110066

doi: 10.1016/j.jenvman.2020.110066
[46]

Basri NEA, Azman NA, Ahmad IK, Suja F, Jalil NAA, et al. 2022. Potential applications of frass derived from black soldier fly larvae treatment of food waste: A review. Foods 11(17):2664

doi: 10.3390/foods11172664
[47]

Jucker C, Lupi D, Moore CD, Leonardi MG, Savoldelli S. 2020. Nutrient recapture from insect farm waste: bioconversion with Hermetia illucens (L.) (Diptera: Stratiomyidae). Sustainability 12(1):362

doi: 10.3390/su12010362
[48]

Meneguz M, Gasco L, Tomberlin JK. 2018. Impact of pH and feeding system on black soldier fly (Hermetia illucens, L; Diptera: Stratiomyidae) larval development. Plos One 13(8):e0202591

doi: 10.1371/journal.pone.0202591
[49]

Kim W, Bae S, Park K, Lee S, Choi Y, et al. 2011. Biochemical characterization of digestive enzymes in the black soldier fly, Hermetia illucens (Diptera: Stratiomyidae). Journal of Asia-Pacific Entomology 14(1):11−14

doi: 10.1016/j.aspen.2010.11.003
[50]

Hamid HA, Qi LP, Harun H, Sunar NM, Ahmad FH, et al. 2019. Development of organic fertilizer from food waste by composting in UTHM Campus Pagoh. Journal of Applied Chemistry and Natural Resources 1:1−6

[51]

Tao X, Xiang F, Ahmad Khan FZ, Yan Y, Ma J, et al. 2023. Decomposition and humification process of domestic biodegradable waste by black soldier fly (Hermetia illucens L.) larvae from the perspective of dissolved organic matter. Chemosphere 317:137861

doi: 10.1016/j.chemosphere.2023.137861
[52]

Beesigamukama D, Mochoge B, Korir NK, Fiaboe KKM, Nakimbugwe D, et al. 2021. Low-cost technology for recycling agro-industrial waste into nutrient-rich organic fertilizer using black soldier fly. Waste Management 119:183−94

doi: 10.1016/j.wasman.2020.09.043
[53]

Lanno M, Kriipsalu M, Shanskiy M, Silm M, Kisand A. 2021. Distribution of phosphorus forms depends on compost source material. Resources 10(10):102

doi: 10.3390/resources10100102
[54]

Barral MT, Paradelo R. 2011. A review on the use of phytotoxicity as a compost quality indicator. Dynamic Soil Dynamic Plant 5(2):36−44

[55]

Siles-Castellano AB, López MJ, López-González JA, Suárez-Estrella F, Jurado MM, et al. 2020. Comparative analysis of phytotoxicity and compost quality in industrial composting facilities processing different organic wastes. Journal of Cleaner Production 252:119820

doi: 10.1016/j.jclepro.2019.119820
[56]

Beesigamukama D, Subramanian S, Tanga CM. 2022. Nutrient quality and maturity status of frass fertilizer from nine edible insects. Scientific Reports 12(1):7182

doi: 10.1038/s41598-022-11336-z