[1]

He X, Guo W, Tang Y, Xiong J, Li Y, et al. 2023. Chloroplast–boosted photodynamic therapy for effective drug-resistant bacteria killing and biofilm ablation. Journal of Photochemistry and Photobiology B: Biology 238:112622

doi: 10.1016/j.jphotobiol.2022.112622
[2]

Zhao X, Qi G, Feng Y, Du C. 2023. Application of nematicide avermectin enriched antibiotic-resistant bacteria and antibiotic resistance genes in farmland soil. Environmental Research 227:115802

doi: 10.1016/j.envres.2023.115802
[3]

OʼNeill J. 2016. Tackling drug-resistant infections globally: Final report and recommendations. Report. Welcome Trust and HM Government. 84 pp. https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf

[4]

Li L, Li H, Tian Q, Ge B, Xu X, et al. 2022. Expression and purification of soluble recombinant β-lactamases using Escherichia coli as expression host and pET-28a as cloning vector. Microbial Cell Factories 21(1):244

doi: 10.1186/s12934-022-01972-5
[5]

van Keulen G, Dyson PJ. 2014. Production of specialized metabolites by Streptomyces coelicolor A3(2). Advances in Applied Microbiology 89:217−66

doi: 10.1016/B978-0-12-800259-9.00006-8
[6]

Wang R, Piggott AM, Chooi YH, Li H. 2023. Discovery, bioactivity and biosynthesis of fungal piperazines. Natural Product Reports 40(2):387−411

doi: 10.1039/D2NP00070A
[7]

Gaudêncio SP, Pereir, F. 2015. Dereplication: Racing to speed up the natural products discovery process. Natural Product Reports 32(6):779−810

doi: 10.1039/C4NP00134F
[8]

Selegato DM, Castro-Gamboa I. 2023. Enhancing chemical and biological diversity by co-cultivation. Frontiers in Microbiology 14:1117559

doi: 10.3389/fmicb.2023.1117559
[9]

Boruta T. 2021. A bioprocess perspective on the production of secondary metabolites by Streptomyces in submerged co-cultures. World Journal of Microbiology and Biotechnology 37(10):171

doi: 10.1007/s11274-021-03141-z
[10]

Wibowo JT, Bayu A, Aryati WD, Fernandes C, Yanuar A, et al. 2023. Secondary metabolites from marine-derived bacteria with antibiotic and antibiofilm activities against drug-resistant pathogens. Marine Drugs 21(1):50

doi: 10.3390/md21010050
[11]

Shevchenko M, Sukhikh S, Babich O, Noskova S, Ivanova S, et al. 2021. First insight into the diversity and antibacterial potential of psychrophilic and psychotrophic microbial communities of abandoned Amber Quarry. Microorganisms 9(7):1521

doi: 10.3390/microorganisms9071521
[12]

Baranova AA, Alferova VA, Korshun VA, Tyurin AP. 2020. Antibiotics from extremophilic micromycetes. Russian Journal of Bioorganic Chemistry 46:903−71

doi: 10.1134/S1068162020060023
[13]

Zada S, Sajjad W, Rafiq M, Ali S, Hu Z, et al. 2022. Cave microbes as a potential source of drugs development in the modern era. Microbial Ecology 84(3):676−87

doi: 10.1007/s00248-021-01889-3
[14]

Martinez-Klimova E, Rodríguez-Peña K, Sánchez S. 2017. Endophytes as sources of antibiotics. Biochemical Pharmacology 134:1−17

doi: 10.1016/j.bcp.2016.10.010
[15]

Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, et al. 2016. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nature Biotechnology 34(8):828−37

doi: 10.1038/nbt.3597
[16]

Gao Y, Stuhldreier F, Schmitt L, Wesselborg S, Guo Z, et al. 2020. Induction of new lactam derivatives from the endophytic fungus Aplosporella javeedii through an OSMAC approach. Frontiers in Microbiology 11:600983

doi: 10.3389/fmicb.2020.600983
[17]

Abdelmohsen UR, Cheng C, Viegelmann C, Zhang T, Grkovic T, et al. 2014. Dereplication strategies for targeted isolation of new antitrypanosomal actinosporins A and B from a marine sponge associated-Actinokineospora sp. EG49. Marine Drugs 12(3):1220−44

doi: 10.3390/md12031220
[18]

Akone SH, Mándi A, Kurtán T, Hartmann R, Lin W, et al. 2016. Inducing secondary metabolite production by the endophytic fungus Chaetomium sp. through fungal–bacterial co-culture and epigenetic modification. Tetrahedron 72(41):6340−47

doi: 10.1016/j.tet.2016.08.022
[19]

Ola ARB, Thomy D, Lai D, Brötz-Oesterhelt H, Proksch P. 2013. Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis. Journal of natural products 76(11):2094−99

doi: 10.1021/np400589h
[20]

Pinedo-Rivilla C, Aleu J, Durán-Patrón R. 2022. Cryptic Metabolites from marine-derived microorganisms using OSMAC and epigenetic approaches. Marine Drugs 20(2):84

doi: 10.3390/md20020084
[21]

Petrini O. 1991. Fungal endophytes of tree leaves. In Microbial ecology of the leaves, eds. Andrews J, Hirano SS. New York: Springer. pp. 179−97. https://doi.org/10.1007/978-1-4612-3168-4_9

[22]

Schulz B, Wanke U, Draeger S, Aust HJ. 1993. Endophytes from herbaceous plants and shrubs: Effectiveness of surface sterilization methods. Mycological research, 97(12):1447−50

doi: 10.1016/S0953-7562(09)80215-3
[23]

White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: A Guide to Methods and Applications 18(1):315−22

doi: 10.1016/b978-0-12-372180-8.50042-1
[24]

The C. elegans Sequencing Consortium. 1998. Genome sequence of the nematode C. elegans: A platform for investigating biology. Science 282:2012−18

doi: 10.1126/science.282.5396.2012
[25]

O'Donnell K, Cigelnik E. 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molecular Phylogenetics and Evolution 7(1):103−16

doi: 10.1006/mpev.1996.0376
[26]

Vu D, Groenewald M, de Vries M, Gehrmann T, Stielow B, et al. 2019. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in Mycology 92(1):135−54

doi: 10.1016/j.simyco.2018.05.001
[27]

Schoch CL, Robbertse B, Robert V, Vu D, Cardinali G, et al. 2014. Finding needles in haystacks: linking scientific names, reference specimens and molecular data for fungi. Database 2014:bau061

doi: 10.1093/database/bau061
[28]

Gargouri S, Balmas V, Burgess L, Paulitz T, Laraba I, et al. 2020. An endophyte of Macrochloa tenacissima (esparto or needle grass) from Tunisia is a novel species in the Fusarium redolens species complex. Mycologia 112(4):792−807

doi: 10.1080/00275514.2020.1767493
[29]

Watanabe M, Goto K, Sugita-Konishi Y, Kamata Y, Hara-Kudo Y. 2012. Sensitive detection of whole-genome differentiation among closely-related species of the genus Fusarium using DNA-DNA hybridization and a microplate technique. Journal of Veterinary Medical Science 74(10):1333−1336

doi: 10.1292/jvms.12-0034
[30]

Crous PW, Lombard L, Sandoval-Denis M, Seifert KA, Schroers HJ, et al. 2021. Fusarium: More than a node or a foot-shaped basal cell. Studies in Mycology 98:100116

doi: 10.1016/j.simyco.2021.100116
[31]

Wang MM, Crous PW, Sandoval-Denis M, Han SL, Liu F, et al. 2022. Fusarium and allied genera from China: Species diversity and distribution. Persoonia - Molecular Phylogeny and Evolution of Fungi 48:1−53

doi: 10.3767/persoonia.2022.48.01
[32]

O’Donnell K, Nirenberg HI, Aoki T, Cigelnik E. 2000. A multigene phylogeny of the Gibberella fujikuroi species complex: detection of additional phylogenetically distinct species. Mycoscience 41(1):61−78

doi: 10.1007/BF02464387
[33]

Riaz M, Khan SN. 2021. Fusarium nygamai strain CBS 749.97 internal transcribed spacer 1, partial sequence; 5.8S ribosomal RNA gene and internal transcribed spacer 2, complete sequence; and large subunit ribosomal RNA gene, partial sequence.

[34]

Sarker SD, Nahar L, Kumarasamy Y. 2007. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 42(4):321−24

doi: 10.1016/j.ymeth.2007.01.006
[35]

Tiwari P, Bae H. 2020. Horizontal gene transfer and endophytes: An implication for the acquisition of novel traits. Plants 9(3):305

doi: 10.3390/plants9030305
[36]

Cabuang PGD, Exconde BS, Salas SR, Macabeo A, Lemana BOC, et al. 2012. Morphological and molecular identification of a novel species of Uvaria (Annonaceae) with potential medicinal properties. Philippine Journal of Systematic Biology 6:1−16

[37]

Macabeo APG, Martinez FPA, Kurtán T, Tóth L, Mándi A, et al. 2014. Tetrahydroxanthene-1,3(2H)-dione derivatives from Uvaria valderramensis. Journal of Natural Products 77(12):2711−15

doi: 10.1021/np500538c
[38]

Macabeo APG, Villaflores OB, Franzblau SG, Aguinaldo MAM. 2016. Natural products-based discovery of antitubercular agents from Philippine medicinal plants – A review. Acta Manilana, 64:87−98

[39]

Macabeo APG, Rubio PYM, Higuchi T, Umezawa N, Faderl C, et al. 2017. Polyoxygenated seco-cyclohexenes and other constituents from Uvaria valderramensis. Biochemical Systematics and Ecology 71:200−4

doi: 10.1016/j.bse.2017.02.013
[40]

Christopher R. 2022. Plant species of the genus Uvaria: Ethnobotanical uses, biological activities and phytochemistry. Natural Product Research 36(11):2946−61

doi: 10.1080/14786419.2021.1929972
[41]

Hewage RT, Aree T, Mahidol C, Ruchirawat S, Kittakoop P. 2014. One strain-many compounds (OSMAC) method for production of polyketides, azaphilones, and an isochromanone using the endophytic fungus Dothideomycete sp. Phytochemistry 108:87−94

doi: 10.1016/j.phytochem.2014.09.013
[42]

Hemphill CFP, Sureechatchaiyan P, Kassack MU, Orfali RS, Lin W, et al. 2017. OSMAC approach leads to new fusarielin metabolites from Fusarium tricinctum. Journal of Antibiotics 70(6):726−32

doi: 10.1038/ja.2017.21
[43]

Tudzynski B. 2014. Nitrogen regulation of fungal secondary metabolism in fungi. Frontiers in Microbiology 5:656

doi: 10.3389/fmicb.2014.00656
[44]

Brakhage AA. 2013. Regulation of fungal secondary metabolism. Nature Reviews. Microbiology 11(1):21−32

doi: 10.1038/nrmicro2916
[45]

Singh V, Haque S, Niwas R, Srivastava A, Pasupuleti M, et al. 2017. Strategies for fermentation medium optimization: An in-depth review. Frontiers in Microbiology 7:2087−102

doi: 10.3389/fmicb.2016.02087
[46]

Abd Rahim MH, Lim EJ, Hasan H, Abbas A. 2019. The investigation of media components for optimal metabolite production of Aspergillus terreus ATCC 20542. Journal of Microbiological Methods 164:105672

doi: 10.1016/j.mimet.2019.105672
[47]

Brzonkalik K, Hümmer D, Syldatk C, Neumann A. 2012. Influence of pH and carbon to nitrogen ratio on mycotoxin production by Alternaria alternata in submerged cultivation. AMB Express 2:28

doi: 10.1186/2191-0855-2-28
[48]

El-Mahdy OM, Mohamed HI, El-Ansary AE. 2023. Optimizations of exopolysaccharide production by Fusarium nygamai strain AJTYC1 and its potential applications as an antioxidant, antimicrobial, anticancer, and emulsifier. BMC Microbiology 23:345

doi: 10.1186/s12866-023-03100-8
[49]

Selvaraj JN, Ganapathi U, Vincent SGP, Ramamoorthy S, Thavasimuthu C. 2023. Statistical optimization of media components for antibiotic production in Streptomyces sp. CMSTAAHAL-3. Electronic Journal of Biotechnology 65:1−13

doi: 10.1016/j.ejbt.2023.03.005
[50]

Lengeler J. 2013. Catabolite repression. In Elsevier eBooks pp. 447–452. Elsevier.

[51]

Wang B, Song CR, Zhang QY, Wei PW, Wang X, et al. 2022. The fusaric acid derivative qy17 inhibits Staphylococcus haemolyticus by disrupting biofilm formation and the stress response via altered gene expression. Frontiers in Microbiology 13:822148

doi: 10.3389/fmicb.2022.822148
[52]

Crutcher FK, Puckhaber LS, Stipanovic RD, Bell AA, Nichols RL, et al. 2017. Microbial resistance mechanisms to the antibiotic and phytotoxin fusaric acid. Journal of Chemical Ecology 43:996−1006

doi: 10.1007/s10886-017-0889-x
[53]

Huang BB, Liu YY, Zhu PF, Jiang YC, Ouyang MA. 2020. Concise total synthesis and antifungal activities of fusaric acid, a natural product. Molecules 25(17):3859

doi: 10.3390/molecules25173859
[54]

Staropoli A, Guastaferro VM, Vinale F, Turrà D, Di Costanzo L, et al. 2024. Repression of autocrine pheromone signaling leads to fusaric acid over-production. Natural Product Research 38:1967−71

doi: 10.1080/14786419.2023.2227992
[55]

Arumugam T, Ghazi T, Abdul NS, Chuturgoon AA. 2021. A review on the oxidative effects of the fusariotoxins: fumonisin B1 and fusaric acid. In Toxicology, eds. Patel VB, Preedy VR. Cambridge, MA: Elsevier. pp. 181–90. https://doi.org/10.1016/b978-0-12-819092-0.00019-4

[56]

Niehaus EM, von Bargen KW, Espino JJ, Pfannmüller A, Humpf HU, et al. 2014. Characterization of the fusaric acid gene cluster in Fusarium fujikuroi. Applied Microbiology and Biotechnology, 98:1749−62

doi: 10.1007/s00253-013-5453-1
[57]

Munkvold GP, Arias S, Taschl I, Gruber-Dorninger C. 2019. Mycotoxins in corn: Occurrence, impacts, and management. In Corn, ed. Serna-Saldivar SO. Oxford: AACC International Press. 3rd Edition. pp. 235−87. https://doi.org/10.1016/b978-0-12-811971-6.00009-7

[58]

Merel D, Savoie JM, Mata G, Salmones D, Ortega C, et al. 2020. Methanolic extracts from cultivated mushrooms affect the production of Fumonisins B and Fusaric acid by Fusarium verticillioides. Toxins 12(6):366

doi: 10.3390/toxins12060366
[59]

Hai Y, Chen M, Huang A, Tang Y. 2020. Biosynthesis of mycotoxin fusaric acid and application of a PLP-Dependent enzyme for chemoenzymatic synthesis of substituted L-pipecolic acids. Journal of the American Chemical Society 142(46):19668−77

doi: 10.1021/jacs.0c09352
[60]

Rana S, Singh SK, Dufossé L. 2022. Multigene phylogeny, beauvericin production and bioactive potential of Fusarium strains isolated in India. Journal of Fungi 8(7):662

doi: 10.3390/jof8070662
[61]

Mohammed A, Al-Ani LKT. 2021. Identification and production of beauvericin by Fusarium subglutinans and F. sacchari from sugarcane. Brazilian Archives of Biology and Technology 64:e21200088

doi: 10.1590/1678-4324-2021200088
[62]

Vásquez-Bonilla JN, Barranco-Florido JE, Ponce-Alquicira E, Rincón-Guevara MA, Loera O. 2022. Improvement of beauvericin production by Fusarium oxysporum AB2 under solid-state fermentation using an optimized liquid medium and co-cultures. Mycotoxin Research 38(3):175−83

doi: 10.1007/s12550-022-00458-y
[63]

Wang Q, Xu L. 2012. Beauvericin, a bioactive compound produced by fungi: A short review. Molecules 17(3):2367−77

doi: 10.3390/molecules17032367
[64]

Wu Q, Patocka J, Nepovimova E, Kuca K. 2018. A review on the synthesis and bioactivity aspects of beauvericin, a Fusarium mycotoxin. Frontiers in Pharmacology 9:1338−49

doi: 10.3389/fphar.2018.01338
[65]

Agrawal S, Adholeya A, Deshmukh SK. 2016. The pharmacological potential of non-ribosomal peptides from marine sponge and tunicates. Frontiers in Pharmacology 7:333−53

doi: 10.3389/fphar.2016.00333
[66]

Iacovelli R, Bovenberg RAL, Driessen AJM. 2021. Nonribosomal peptide synthetases and their biotechnological potential in Penicillium rubens. Journal of Industrial Microbiology & Biotechnology 48(7−8):kuab045

doi: 10.1093/jimb/kuab045