[1] |
Cheng Z, Bao Y, Li Z, Wang J, Wang M, et al. 2022. Lonicera caerulea (Haskap berries): a review of development traceability, functional value, product development status, future opportunities, and challenges. Critical Reviews in Food Science and Nutrition 63:8992−9016 doi: 10.1080/10408398.2022.2061910 |
[2] |
Zhang M, Ma X, Xiao Z, Sun A, Zhao M, et al. 2023. Polyphenols in twenty cultivars of blue honeysuckle (Lonicera caerulea L.): Profiling, antioxidant capacity, and α-amylase inhibitory activity. Food Chemistry 421:136148 doi: 10.1016/j.foodchem.2023.136148 |
[3] |
European Food Safety Authority (EFSA). 2018. Technical Report on the notification of berries of Lonicera caerulea L. as a traditional food from a third country pursuant to Article 14 of Regulation (EU). EFSA Supporting Publications 15(7):1442E doi: 10.2903/sp.efsa.2018.en-1442 |
[4] |
Leisso R, Jarrett B, Richter R, Miller Z. 2021. Fresh haskap berry postharvest quality characteristics and storage life. Canadian Journal of Plant Science 101:1051−63 doi: 10.1139/cjps-2021-0138 |
[5] |
Dziedzic E, Błaszczyk J, Bieniasz M, Dziadek K, Kopeć A. 2020. Effect of modified (MAP) and controlled atmosphere (CA) storage on the quality and bioactive compounds of blue honeysuckle fruits (Lonicera caerulea L.). Scientia Horticulturae 265:109226 doi: 10.1016/j.scienta.2020.109226 |
[6] |
Mditshwa A, Fawole OA, Opara UL. 2018. Recent developments on dynamic controlled atmosphere storage of apples—A review. Food Packaging and Shelf Life 16:59−68 doi: 10.1016/j.fpsl.2018.01.011 |
[7] |
Cukrov D, Zermiani M, Brizzolara S, Cestaro A, Licausi F, et al. 2016. Extreme hypoxic conditions induce selective molecular responses and metabolic reset in detached apple fruit. Frontiers in Plant Science 7:146 doi: 10.3389/fpls.2016.00146 |
[8] |
Thompson AK, Prange RK, Bancroft RD, Puttongsiri T. 2018. Effect and interaction of CA storage. In Controlled atmosphere storage of fruit and vegetables, ed. Thompson AK. 3rd Edition. Boston, UK: CABI. Vol. 2. pp. 11−25. https://lccn.loc.gov/2018034923 |
[9] |
Zheng Y, Yang Z, Chen X. 2008. Effect of high oxygen atmospheres on fruit decay and quality in Chinese bayberries, strawberries and blueberries. Food Control 19:470−74 doi: 10.1016/j.foodcont.2007.05.011 |
[10] |
Cantín C, Minas I, Goulas V, Jiménez M, Manganaris G, et al. 2012. Sulfur dioxide fumigation alone or in combination with CO2-enriched atmosphere extends the market life of highbush blueberry fruit. Postharvest Biology and Technology 67:84−91 doi: 10.1016/j.postharvbio.2011.12.006 |
[11] |
Qiao J, Li D, Guo L, Hong X, He S, et al. 2024. Enhancing Postharvest Quality and Antioxidant Capacity of Blue Honeysuckle cv 'Lanjingling' with Chitosan and Aloe vera Gel Edible Coatings during Storage. Foods 13:630 doi: 10.3390/foods1304063 |
[12] |
Li HS, Sun Q, Zhao SJ, Zhang W. 2000. Experimental techniques of plant physiology and biochemistry. In Principles and techniques of plant physiological biochemical experiment. Teaching material (in Chinese). Higher Education Research and Development. 3rd Edition. pp. 195−97 |
[13] |
Wang P, Lu S, Zhang X, Hyden B, Qin L, et al. 2021. Double NCED isozymes control ABA biosynthesis for ripening and senescent regulation in peach fruits. Plant Science 304:110739 doi: 10.1016/j.plantsci.2020.110739 |
[14] |
Klimczak I, Gliszczyńska-Świgło A. 2015. Comparison of UPLC and HPLC methods for determination of vitamin C. Food Chemistry 175:100−5 doi: 10.1016/j.foodchem.2014.11.104 |
[15] |
Singleton VL, Orthofer R, Lamuela-Raventós RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymol 299:152−78 doi: 10.1016/s0076-6879(99)99017-1 |
[16] |
Chang CC, Yang MH, Wen HM, Chern JC. 2002. Estimation of total flavonoid content in propolis by two complementary colometric methods. Journal of Food and Drug Analysis 10(3):3 doi: 10.38212/2224-6614.2748 |
[17] |
Zhang Y, Chen S, Huo J, Huang D. 2019. Deciphering the nutritive and antioxidant properties of Malay cherry (Lepisanthes alata) fruit dominated by ripening effects. RSC Advance 9:38065−76 doi: 10.1039/C9RA05312C |
[18] |
Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology 28:25−30 doi: 10.1016/S0023-6438(95)80008-5 |
[19] |
Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, et al. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26:1231−37 doi: 10.1016/S0891-5849(98)00315-3 |
[20] |
Benzie IFF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry 239:70−76 doi: 10.1006/abio.1996.0292 |
[21] |
Chu W, Gao H, Chen H, Wu W, Fang X. 2018. Changes in cuticular wax composition of two blueberry cultivars during fruit ripening and postharvest cold storage. Journal of Agricultural and Food Chemistry 66:2870−76 doi: 10.1021/acs.jafc.7b05020 |
[22] |
Mao H, Lv Y, Chen G, Jiang Y. 2022. Effects of cuticular wax on the postharvest physiology in fragrant pear at different storages. Journal of the Science of Food and Agriculture 102:4425−34 doi: 10.1002/jsfa.11796 |
[23] |
Do Nascimento Nunes MC. 2009. Soft Fruits and Berries. In Color atlas of postharvest quality of fruits and vegetables, ed. Stonos J. Vol. 3. USA: Blackwell Publishing. pp. 137−89. https://doi.org/10.1002/9780813802947 |
[24] |
Brasil IM, Siddiqui MW. 2018. Postharvest quality of fruits and vegetables: An overview. In Preharvest Modulation of Postharvest Fruit and Vegetable Quality, ed. Siddiqui MW. London: Academic Press, Elsevier Science. pp. 1-40. https://doi.org/10.1016/b978-0-12-809807-3.00001-9 |
[25] |
Gunes G, Liu RH, Watkins C. 2002. Controlled-atmosphere effects on postharvest quality and antioxidant activity of cranberry fruits. Journal of Agricultural and Food Chemistry 50:5932−38 doi: 10.1021/jf025572c |
[26] |
Balaguera-López HE, Espinal-Ruiz M, Rodríguez-Nieto JM, Herrera-Arévalo, A, Zacarías L. 2021. 1-Methylcyclopropene inhibits ethylene perception and biosynthesis: A theoretical and experimental study on cape gooseberry (Physalis peruviana L.) fruits. Postharvest Biology and Technology 174:111467 doi: 10.1016/j.postharvbio.2021.111467 |
[27] |
Paniagua AC, East AR, Hindmarsh JP, Heyes JA. 2013. Moisture loss is the major cause of firmness change during postharvest storage of blueberry. Postharvest Biology and Technology 79:13−19 doi: 10.1016/j.postharvbio.2012.12.016 |
[28] |
Nishiyama K, Guis M, Rose JKC, Kubo Y, Bennett KA, et al. 2007. Ethylene regulation of fruit softening and cell wall disassembly in Charentais melon. Journal of Experimental Botany 58:1281−1290 doi: 10.1093/jxb/erl283 |
[29] |
Gerbrandt EM, Bors RH, Meyer D, Wilen R, Chibbar RN. 2020. Fruit quality of Japanese, Kuril and Russian blue honeysuckle (Lonicera caerulea L.) germplasm compared to blueberry, raspberry and strawberry. Euphytica 216:59 doi: 10.1007/s10681-020-02587-w |
[30] |
Blinnikova OM, Ilinsky AS, Novikova IM, Eliseeva LG. 2021. Honeysuckle storage in modified atmosphere. IOP Conference Series: Earth and Environmental Science 640:022069 doi: 10.1088/1755-1315/640/2/022069 |
[31] |
Wang YS, Tian SP, Xu Y. 2005. , Effects of high oxygen concentration on pro-and anti-oxidant enzymes in peach fruits during postharvest periods. Food Chemistry 91:99−104 doi: 10.1016/j.foodchem.2004.05.053 |
[32] |
Liu S, Huang H, Huber DJ, Pan Y, Shi X, et al. 2020. Delay of ripening and softening in ‘Guifei’ mango fruit by postharvest application of melatonin. Postharvest Biology and Technology 163:111136 doi: 10.1016/j.postharvbio.2020.111136 |
[33] |
Xie M, Jiang GH, Zhang HQ, Kawada K. 2002. Effect of preharvest Ca-chelate treatment on the storage quality of kiwifruit. Acta Horticulturae 610:317−24 doi: 10.17660/actahortic.2003.610.41 |
[34] |
Bopitiya D, Guo S, Hearn MTW, Zhang J, Bennett LE. 2022. Formulations of selected Energy beverages promote pro-oxidant effects of ascorbic acid and long-term stability of hydrogen peroxide. Food Chemistry 388:133037 doi: 10.1016/j.foodchem.2022.133037 |
[35] |
Fonseca SC, Oliveira FAR, Brecht JK. 2002. Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: a review. Journal of Food Engineering 52:99−119 doi: 10.1016/S0260-8774(01)00106-6 |
[36] |
Horvitz S, Arancibia M, Arroqui C, Chonata E, Vírseda P. 2021. Effects of gaseous ozone on microbiological quality of andean blackberries (Rubus glaucus Benth). Foods 10:2039 doi: 10.3390/foods10092039 |
[37] |
Liang Z, Luo Z, Li W, Yang M, Wang L, et al. 2021. Elevated CO2 Enhanced the Antioxidant Activity and Downregulated Cell Wall Metabolism of Wolfberry (Lycium barbarum L.). Antioxidants 11:16 doi: 10.3390/antiox11010016 |
[38] |
Alwazeer D, Özkan N. 2022. Incorporation of hydrogen into the packaging atmosphere protects the nutritional, textural and sensorial freshness notes of strawberries and extends shelf life. Journal of Food Science and Technology 59:3951−64 doi: 10.1007/s13197-022-05427-y |
[39] |
Zhang Y, Li D, Qiao J, Ni Y, Liu P, et al. 2022. Structure, degree of polymerization, and starch hydrolase inhibition activities of bird cherry (Prunus padus) proanthocyanidins. Food Chemistry 385:132588 doi: 10.1016/j.foodchem.2022.132588 |
[40] |
Gonçalves B, Silva AP, Moutinho-Pereira J, Bacelar E, Rosa E, et al. 2007. Effect of ripeness and postharvest storage on the evolution of colour and anthocyanins in cherries (Prunus avium L.). Food Chemistry 103:976−84 doi: 10.1016/j.foodchem.2006.08.039 |