[1]

Winans MJ. 2022. Yeast hybrids in brewing. Fermentation 8(2):87

doi: 10.3390/fermentation8020087
[2]

Bušić A, Marđetko N, Kundas S, Morzak G, Belskaya H, et al. 2018. Bioethanol production from renewable raw materials and its separation and purification: A review. Food Technology and Biotechnology 56(3):289−311

doi: 10.17113/ftb.56.03.18.5546
[3]

Stanzer D, Hanousek Čiča K, Blesić M, Smajić Murtić M, Mrvčić J, et al. 2023. Alcoholic fermentation as a source of congeners in fruit spirits. Foods 12(10):1951

doi: 10.3390/foods12101951
[4]

Tarimo CB, Kaale LD. 2023. Use of yeasts in traditional alcoholic beverages in tanzania and potential opportunities. Journal of the American Society of Brewing Chemists 81(1):1−11

doi: 10.1080/03610470.2021.2013677
[5]

Khlibyshyn Y, Pochapska I. 2021. Study of cultivation of yeast Saccharomyces cerevisiae in different mediums. Chemistry, Technology and Application of Substances 4(2):122−26

doi: 10.23939/ctas2021.02.122
[6]

Parapouli M, Vasileiadis A, Afendra AS, Hatziloukas E. 2020. Saccharomyces cerevisiae and its industrial applications. AIMS Microbiology 6(1):1−31

doi: 10.3934/microbiol.2020001
[7]

Sun J, Xu S, Du Y, Yu K, Jiang Y, et al. 2022. Accumulation and enrichment of trace elements by yeast cells and their applications: A critical review. Microorganisms 10(9):1746

doi: 10.3390/microorganisms10091746
[8]

Nielsen J. 2019. Yeast systems biology: model organism and cell factory. Biotechnology Journal 14(9):1800421

doi: 10.1002/biot.201800421
[9]

Gloria-Trujillo A, Hernández-Sánchez D, Crosby-Galván MM, Hernández-Mendo O, Mata-Espinosa MÁ, et al. 2022. Performance and carcass characteristics of lambs fed diets supplemented with different levels of Saccharomyces cerevisiae. Revista Brasileira De Zootecnia - Brazilian Journal of Animal Science 51(1):e20200281

doi: 10.37496/rbz5120200281
[10]

Colica G, Mecarozzi PC, De Philippis R. 2010. Biosorption and recovery of chromium from industrial waste waters by using Saccharomyces cerevisiae in a flow through system. Journal of Biotechnology 150(11):55−

doi: 10.1016/j.jbiotec.2010.08.145
[11]

Zabed H, Sahu JN, Suely A, Boyce AN, Faruq G. 2017. Bioethanol production from renewable sources: Current perspectives and technological progress. Renewable & Sustainable Energy Reviews 71:475−501

doi: 10.1016/j.rser.2016.12.076
[12]

Gonzalez R, Morales P. 2022. Truth in wine yeast. Microbial Biotechnology 15:1339−56

doi: 10.1111/1751-7915.13848
[13]

Heitmann M, Zannini E, Arendt EK. 2015. Impact of different beer yeasts on wheat dough and bread quality parameters. Journal of Cereal Science 63:49−56

doi: 10.1016/j.jcs.2015.02.008
[14]

Pico J, Bernal J, Gómez M. 2015. Wheat bread aroma compounds in crumb and crust: A review. Food Research International 75:200−15

doi: 10.1016/j.foodres.2015.05.051
[15]

Wanikawa A. 2020. Flavors in malt Whisky: a review. Journal of the American Society of Brewing Chemists 78(4):260−78

doi: 10.1080/03610470.2020.1795795
[16]

da Silva Fernandes F, de Souza ÉS, Carneiro LM, Alves Silva JP, de Souza JVB, et al. 2022. Current ethanol production requirements for the Yeast Saccharomyces cerevisiae. International Journal of Food Microbiology 2022:7878830

doi: 10.1155/2022/7878830
[17]

Ndubuisi IA, Amadi CO, Nwagu TN, Murata Y, Ogbonna JC. 2023. Non-conventional yeast strains: unexploited resources for effective commercialization of second generation bioethanol. Biotechnology Advances 63:108100

doi: 10.1016/j.biotechadv.2023.108100
[18]

Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, et al. 1996. Life with 6000 genes. Science 274(5287):546−67

doi: 10.1126/science.274.5287.546
[19]

Ye VM, Bhatia SK. 2012. Pathway engineering strategies for production of beneficial carotenoids in microbial hosts. Biotechnology Letters 34:1405−14

doi: 10.1007/s10529-012-0921-8
[20]

Höhne, M, Kabisch, J. 2016. Brewing Painkillers: a yeast cell factory for the production of opioids from sugar. Angewandte Chemie - International Edition 55(4):1248−50

doi: 10.1002/anie.201510333
[21]

Galanie S, Thodey K, Trenchard IJ, Filsinger Interrante M, Smolke CD. 2015. Complete biosynthesis of opioids in yeast. Science 349(6252):1095−100

doi: 10.1126/science.aac9373
[22]

Malcı K, Watts E, Roberts TM, Auxillos JY, Nowrouzi B, et al. 2022. Standardization of synthetic biology tools and assembly methods for Saccharomyces cerevisiae and emerging yeast species. Acs Synthetic Biology 11(8):2527−47

doi: 10.1021/acssynbio.1c00442
[23]

Dai Z, Liu Y, Guo J, Huang L, Zhang X. 2015. Yeast synthetic biology for high-value metabolites. FEMS Yeast Research 15(1):1−11

doi: 10.1111/1567-1364.12187
[24]

Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, et al. 2013. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496(7446):528−32

doi: 10.1038/nature12051
[25]

Zhou Y, Gao W, Rong Q, Jin G, Chu H, et al. 2012. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production. Journal of the American Chemical Society 134(6):3234−41

doi: 10.1021/ja2114486
[26]

Sydor T, Schaffer S, Boles E. 2010. Considerable increase in resveratrol production by recombinant industrial yeast strains with use of rich medium. Applied and Environmental Microbiology 76(10):3361−63

doi: 10.1128/AEM.02796-09
[27]

Dai Z, Liu Y, Zhang X, Shi M, Wang B, et al. 2013. Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides. Metabolic Engineering 20:146−56

doi: 10.1016/j.ymben.2013.10.004
[28]

Zimmermann A, Hofer S, Pendl T, Kainz K, Madeo F, et al. 2018. Yeast as a tool to identify anti-aging compounds. Fems Yeast Research 18(6):foy020

doi: 10.1093/femsyr/foy020
[29]

Botstein D, Fink GR. 2011. Yeast: An experimental organism for 21st century biology. Genetics 189(3):695−704

doi: 10.1534/genetics.111.130765
[30]

Wu J, Liu Y, Zhao H, Huang M, Sun Y, et al. 2021. Recent advances in the understanding of off-flavors in alcoholic beverages: Generation, regulation, and challenges. Journal of Food Composition and Analysis 103(1):104117

doi: 10.1016/j.jfca.2021.104117
[31]

Kobayashi Y, Sahara T, Ohgiya S, Kamagata Y, Fujimori KE. 2018. Systematic optimization of gene expression of pentose phosphate pathway enhances ethanol production from a glucose/xylose mixed medium in a recombinant Saccharomyces cerevisiae. AMB Express 8:139

doi: 10.1186/s13568-018-0670-8
[32]

Muller G, de Godoy VR, Dário MG, Duval EH, Alves-Jr SL, et al. 2023. Improved sugarcane-based fermentation processes by an industrial fuel-ethanol yeast strain. Journal of Fungi 9(8):803

doi: 10.3390/jof9080803
[33]

Vargas BO, Dos Santos JR, Pereira GAG, de Mello FDSB. 2023. An atlas of rational genetic engineering strategies for improved xylose metabolism in Saccharomyces cerevisiae. PeerJ 11:e16340

doi: 10.7717/peerj.16340
[34]

Eldarov MA, Mardanov AV. 2020. Metabolic engineering of wine strains of Saccharomyces cerevisiae. Genes 11(9):964

doi: 10.3390/genes11090964
[35]

Molina-Espeja P. 2020. Next generation winemakers: genetic engineering in Saccharomyces cerevisiae for trendy challenges. Bioengineering 7(4):128

doi: 10.3390/bioengineering7040128
[36]

Shi W, Li J, Chen Y, Liu X, Chen Y, et al. 2021. Metabolic engineering of Saccharomyces cerevisiae for ethyl acetate biosynthesis. ACS Synthetic Biology 10(3):495−504

doi: 10.1021/acssynbio.0c00446
[37]

Krivoruchko A, Nielsen J. 2015. Production of natural products through metabolic engineering of Saccharomyces cerevisiae. Current Opinion in Biotechnology 35:7−15

doi: 10.1016/j.copbio.2014.12.004
[38]

Chen Y, Yang Y, Cai W, Zeng J, Liu N, et al. 2023. Research progress of anti-environmental factor stress mechanism and anti-stress tolerance way of Saccharomyces cerevisiae during the brewing process. Critical Reviews In Food Science and Nutrition 63(33):12308−23

doi: 10.1080/10408398.2022.2101090
[39]

Medina K, Boido E, Fariña L, Gioia O, Gomez ME, et al. 2013. Increased flavour diversity of Chardonnay wines by spontaneous fermentation and co-fermentation with Hanseniaspora vineae. Food Chemistry 141(3):2513−21

doi: 10.1016/j.foodchem.2013.04.056
[40]

Bokulich NA, Bamforth CW. 2013. The Microbiology of Malting and Brewing. Microbiology and Molecular Biology Reviews 77:157−72

doi: 10.1128/MMBR.00060-12
[41]

Galván-D'Alessandro L, Carciochi RA. 2018. Fermentation assisted by pulsed electric field and ultrasound: a review. Fermentation 4(1):1

doi: 10.3390/fermentation4010001
[42]

Ballard Z, Brown C, Madni AM, Ozcan A. 2021. Machine learning and computation-enabled intelligent sensor design. Nature Machine Intelligence 3:556−65

doi: 10.1038/s42256-021-00360-9
[43]

Wang C, He T, Zhou H, Zhang Z, Lee C. 2023. Artificial intelligence enhanced sensors - enabling technologies to next-generation healthcare and biomedical platform. Bioelectronic Medicine 9:17

doi: 10.1186/s42234-023-00118-1
[44]

Heitmann M, Zannini E, Arendt E. 2018. Impact of Saccharomyces cerevisiae metabolites produced during fermentation on bread quality parameters: A review. Critical Reviews In Food Science and Nutrition 58(7):1152−64

doi: 10.1080/10408398.2016.1244153
[45]

Corsetti A, Gobbetti M, De Marco B, Balestrieri F, Paoletti F, et al. 2000. Combined effect of sourdough lactic acid bacteria and additives on bread firmness and staling. Journal of Agricultural and Food Chemistry 48(7):3044−51

doi: 10.1021/jf990853e
[46]

Hazelwood LA, Daran JM, van Maris AJA, Pronk JT, Dickinson JR. 2008. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Applied and Environmental Microbiology 74(8):2259−66

doi: 10.1128/AEM.02625-07
[47]

Liu T, Li Y, Sadiq FA, Yang H, Gu J, et al. 2018. Predominant yeasts in Chinese traditional sourdough and their influence on aroma formation in Chinese steamed bread. Food Chemistry 242(1):404−11

doi: 10.1016/j.foodchem.2017.09.081
[48]

Sun X, Wu S, Li W, Koksel F, Du Y, et al. 2023. The effects of cooperative fermentation by yeast and lactic acid bacteria on the dough rheology, retention and stabilization of gas cells in a whole wheat flour dough system – A review. Food Hydrocolloids 135:108212

doi: 10.1016/j.foodhyd.2022.108212
[49]

Katina K, Liukkonen KH, Kaukovirta-Norja A, Adlercreutz H, Heinonen SM, et al. 2007. Fermentation-induced changes in the nutritional value of native or germinated rye. Journal of Cereal Science 46(3):348−55

doi: 10.1016/j.jcs.2007.07.006
[50]

Gibson BR, Lawrence SJ, Leclaire JPR, Powell CD, Smart KA. 2007. Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Review 31:535−69

doi: 10.1111/j.1574-6976.2007.00076.x
[51]

Hansen EH, Møller BL, Kock GR, Bünner CM, Kristensen C, et al. 2009. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae). Applied and Environmental Microbiology 75(9):2765−74

doi: 10.1128/AEM.02681-08
[52]

Chen X, Nielsen KF, Borodina I, Kielland-Brandt MC, Karhumaa K. 2011. Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism. Biotechnology for Biofuels 4:21

doi: 10.1186/1754-6834-4-21
[53]

Brochado AR, Matos C, Møller BL, Hansen J, Mortensen UH, et al. 2010. Improved vanillin production in baker's yeast through in silico design. Microbial Cell Factories 9:84

doi: 10.1186/1475-2859-9-84
[54]

Gottardi M, Knudsen JD, Prado L, Oreb M, Branduardi P, et al. 2017. De novo biosynthesis of trans-cinnamic acid derivatives in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology 101(12):4883−93

doi: 10.1007/s00253-017-8220-x
[55]

Nakagawa Y, Ogihara H, Mochizuki C, Yamamura H, Iimura Y, et al. 2017. Development of intra-strain self-cloning procedure for breeding baker's yeast strains. Journal of Bioscience And Bioengineering 123(3):319−26

doi: 10.1016/j.jbiosc.2016.10.008
[56]

Sun X, Zhang CY, Wu MY, Fan ZH, Liu SN, et al. 2016. MAL62 overexpression and NTH1 deletion enhance the freezing tolerance and fermentation capacity of the baker's yeast in lean dough. Microbial Cell Factories 15:54

doi: 10.1186/s12934-016-0453-3
[57]

Sasano Y, Haitani Y, Hashida K, Oshiro S, Shima J, et al. 2013. Improvement of fermentation ability under baking-associated stress conditions by altering the POG1 gene expression in baker's yeast. International Journal of Food Microbiology 165(3):241−45

doi: 10.1016/j.ijfoodmicro.2013.05.015
[58]

Lin X, Zhang CY, Bai XW, Song HY, Xiao DG. 2014. Effects of MIG1, TUP1 and SSN6 deletion on maltose metabolism and leavening ability of baker's yeast in lean dough. Microbial Cell Factories 13:93

doi: 10.1186/s12934-014-0093-4
[59]

Pérez-Torrado R, Matallana E. 2015. Enhanced fermentative capacity of yeasts engineered in storage carbohydrate metabolism. Biotechnology Progress 31(1):20−24

doi: 10.1002/btpr.1993
[60]

Karthikeyan KS, Polasa H, Sastry KS, Reddy G. 2008. Metabolism of lysine-chromium complex in Saccharomyces cerevisiae. Indian Journal of Microbiology 48(3):397−400

doi: 10.1007/s12088-008-0047-9
[61]

Maares M, Keil C, Pallasdies L, Schmacht M, Senz M et al. 2022. Zinc availability from zinc-enriched yeast studied with an in vitro digestion/Caco-2 cell culture model. Journal of Trace Elements in Medicine and Biology 71:126934

doi: 10.1016/j.jtemb.2022.126934
[62]

Park SY, Joo SS, Won TJ, Chung JW, Hwang KW. 2007. A modified process for producing high quantities of bio-germanium in yeast and a study of its oral toxicity. Food Science & Biotechnology 16(1):78−82

[63]

Adadi P, Barakova NV, Muravyov KY, Krivoshapkina EF. 2019. Designing selenium functional foods and beverages: A review. Food Research International 120(9):708−25

doi: 10.1016/j.foodres.2018.11.029
[64]

Alijan S, Hosseini M, Esmaeili S, Khosravi-Darani K. 2022. Impact of ultrasound and medium condition on production of selenium-enriched yeast. Electronic Journal of Biotechnology 60:36−42

doi: 10.1016/j.ejbt.2022.09.004
[65]

Gonzalez-Salitre L, Roman-Gutierrez AD, Rodriguez-Serrano GM, Jaimez-Ordaz J, Bautista-Avila M, et al. 2023. Mechanistic insight into biotransformation of inorganic selenium to selenomethionine and selenocysteine by Saccharomyces boulardii: in-silico study. Biointerface Research in Applied Chemistry 13(1):14

doi: 10.33263/briac131.014
[66]

Suhajda A, Hegóczki J, Janzsó B, Pais I, Vereczkey G. 2000. Preparation of selenium yeasts I. Preparation of selenium-enriched Saccharomyces cerevisiae. Journal of Trace Elements in Medicine and Biology 14(1):43−47

doi: 10.1016/S0946-672X(00)80022-X
[67]

Kieliszek M. 2019. Selenium-fascinating microelement, properties and sources in food. Molecules 24(7):1298

doi: 10.3390/molecules24071298
[68]

Guardado-Félix D, Lazo-Vélez MA, Serna-Saldivar SO. 2019. Protein-selenized enriched breads. In Flour and Breads and their Fortification in Health and Disease Prevention, eds, Victor RP. 2nd Edition. Cambridge: Academic Press. pp. 307−17. https://doi.org/10.1016/B978-0-12-814639-2.00024-1

[69]

Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, et al. 2011. Selenium in human health and disease. Antioxidants & Redox Signaling 14(7):1337−83

doi: 10.1089/ars.2010.3275
[70]

Jing Y, Wang Y, Zhou D, Wang J, Li J, et al. 2022. Advances in the synthesis of three typical tetraterpenoids including β-carotene, lycopene and astaxanthin. Biotechnology Advances 61:108033

doi: 10.1016/j.biotechadv.2022.108033
[71]

Borodina I, Nielsen J. 2014. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnology Journal 9(5):609−20

doi: 10.1002/biot.201300445
[72]

Gu Y, Jiao X, Ye L, Yu H. 2021. Metabolic engineering strategies for de novo biosynthesis of sterols and steroids in yeast. Bioresources and Bioprocessing 8(1):110

doi: 10.1186/s40643-021-00460-9
[73]

Liang Z, Zhi H, Fang Z, Zhang P. 2021. Genetic engineering of yeast, filamentous fungi and bacteria for terpene production and applications in food industry. Food Research International 147:110487

doi: 10.1016/j.foodres.2021.110487
[74]

Shibasaki S, Ueda M. 2016. Oral vaccine development by molecular display methods using microbial cells. In Vaccine Design. Methods in Molecular Biology, ed. Thomas S. vol 1404. New York: Humana. pp. 497−509. https://doi.org/10.1007/978-1-4939-3389-1_32

[75]

Redden H, Morse N, Alper HS. 2015. The synthetic biology toolbox for tuning gene expression in yeast. FEMS Yeast Research 15(1):1−10

doi: 10.1111/1567-1364.12188
[76]

Wagner JM, Alper HS. 2016. Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances. Fungal Genetics and Biology 89:126−36

doi: 10.1016/j.fgb.2015.12.001
[77]

Love KR, Dalvie NC, Love JC. 2018. The yeast stands alone: the future of protein biologic production. Current Opinion in Biotechnology 53:50−58

doi: 10.1016/j.copbio.2017.12.010
[78]

Maya D, Quintero MJ, de la Cruz Muñoz-Centeno M, Chavez S. 2008. Systems for applied gene control in Saccharomyces cerevisiae. Biotechnology Letters 30(6):979−87

doi: 10.1007/s10529-008-9647-z
[79]

Ellis RW. 1991. Recombinant yeast-derived hepatitis B vaccine: the prototype for biotechnologically derived old vaccines. Bioprocess technology 13:355−69

[80]

Bill RM. 2015. Recombinant protein subunit vaccine synthesis in microbes: a role for yeast? Journal of Pharmacy and Pharmacology 67(3):319−28

doi: 10.1111/jphp.12353
[81]

Walker RSK, Pretorius IS. 2018. Applications of yeast synthetic biology geared towards the production of biopharmaceuticals. Genes 9(7):340

doi: 10.3390/genes9070340
[82]

Xia F, Du J, Wang K, Liu L, Ba L, et al. 2022. Application of multiple strategies to debottleneck the biosynthesis of longifolene by engineered Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry 70:11336−43

doi: 10.1021/acs.jafc.2c04405
[83]

Yamano S, Ishii T, Nakagawa M, Ikenaga H, Misawa N. 1994. Metabolic engineering for production of β-carotene and lycopene in Saccharomyces cerevisiae. Bioscience Biotechnology And Biochemistry 58(6):1112−14

doi: 10.1271/bbb.58.1112
[84]

Guo W, Ai L, Hu D, Chen Y, Geng M, et al. 2022. URA3 affects artemisinic acid production by an engineered Saccharomyces cerevisiae in pilot-scale fermentation. Chinese journal of biotechnology 38:737−48

doi: 10.13345/j.cjb.210297
[85]

Kirby J, Romanini DW, Paradise EM, Keasling JD. 2008. Engineering triterpene production in Saccharomyces cerevisiae-beta-amyrin synthase from Artemisia annua. The FEBS Journal 275(8):1852−59

doi: 10.1111/j.1742-4658.2008.06343.x
[86]

Zhou K, Qiao K, Edgar S, Stephanopoulos G. 2015. Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nature Biotechnology 33(4):377−83

doi: 10.1038/nbt.3095
[87]

Nowrouzi B, Li RA, Walls LE, d'Espaux L, Malcı K, et al. 2020. Enhanced production of taxadiene in Saccharomyces cerevisiae. Microbial Cell Factories 19:200

doi: 10.1186/s12934-020-01458-2
[88]

Du W, Song Y, Liu M, Yang H, Zhang Y, et al. 2016. Gene expression pattern analysis of a recombinant Escherichia coli strain possessing high growth and lycopene production capability when using fructose as carbon source. Biotechnology Letters 38(9):1571−77

doi: 10.1007/s10529-016-2133-0
[89]

Stubbs AC, Martin KS, Coeshott C, Skaates SV, Kuritzkes DR, et al. 2001. Whole recombinant yeast vaccine activates dendritic cells and elicits protective cell-mediated immunity. Nature Medicine 7:625−29

doi: 10.1038/87974
[90]

Chen X. 2017. Yeast cell surface display: An efficient strategy for improvement of bioethanol fermentation performance. Bioengineered 8(2):115−19

doi: 10.1080/21655979.2016.1212135
[91]

Cherf GM, Cochran JR. 2015. Applications of yeast surface display for protein engineering. In Yeast Surface Display. Methods in Molecular Biology, ed. Liu B. vol 1319. New York: Humana Press. pp. 155−75. https://doi.org/10.1007/978-1-4939-2748-7_8

[92]

Kumar R, Kumar P. 2019. Yeast-based vaccines: New perspective in vaccine development and application. FEMS Yeast Research 19(2):foz007

doi: 10.1093/femsyr/foz007
[93]

Rakestraw JA, Aird D, Aha PM, Baynes BM, Lipovšek D. 2011. Secretion-and-capture cell-surface display for selection of target-binding proteins. Protein Engineering Design & Selection 24(6):525−30

doi: 10.1093/protein/gzr008
[94]

Abun A, Widjastuti T, Haetami K. 2022. Effect of fermented shrimp shell supplementation of low protein diet on the performance of Indonesian native chicken. Journal of Applied Animal Research 50(1):612−19

doi: 10.1080/09712119.2022.2123810
[95]

Boyd JA, Yantis M. 2020. PSIV-29 The effects of Saccharomyces cerevisiae fermentation product on the performance of creep fed Boer cross kids in regards to average daily gain and weaning weights on alfalfa and grain supplementation. Journal of Animal Science 98(4):288−89

doi: 10.1093/jas/skaa278.520
[96]

Arican I. 2012. Effects of Saccharomyces cerevisiae yeast on tibia bone characteristics in rabbits. Journal of Animal and Veterinary Advances 11(10):1518−21

[97]

Attia YA, Al-Khalaifah H, Abd El-Hamid HS, Al-Harthi MA, Alyileili SR, et al. 2022. Antioxidant status, blood constituents and immune response of broiler chickens fed two types of diets with or without different concentrations of active yeast. Animals 12(4):453

doi: 10.3390/ani12040453
[98]

Labussière E, Achard C, Dubois S, Combes S, Castex M, et al. 2022. Saccharomyces cerevisiae boulardii CNCM I-1079 supplementation in finishing male pigs helps to cope with heat stress through feeding behaviour and gut microbiota modulation. British Journal of Nutrition 127(3):353−68

doi: 10.1017/S0007114521001756
[99]

Shurson GC. 2018. Yeast and yeast derivatives in feed additives and ingredients: Sources, characteristics, animal responses, and quantification methods. Animal Feed Science and Technology 235:60−76

doi: 10.1016/j.anifeedsci.2017.11.010
[100]

Runguphan W, Keasling JD. 2014. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metabolic Engineering 21:103−13

doi: 10.1016/j.ymben.2013.07.003
[101]

Fan C, Diao Z, Zhang Y, Meng D, Zhang Y, et al. 2009. Removal of copper from aqueous solutions by waste biomass of Saccharomyces cerevisiae. Proc. 2009 3 rd International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2009), Beijing, China, 2009. Washington, USA: IEEE press. pp. 1−4. https://doi.org/10.1109/ICBBE.2009.5163306

[102]

Zhang Y, Liu W, Zhang L, Wang M, Zhao M. 2011. Application of bifunctional Saccharomyces cerevisiae to remove lead(II) and cadmium(II) in aqueous solution. Applied Surface Science 257(23):9809−16

doi: 10.1016/j.apsusc.2011.06.026
[103]

Srivastava RK, Shetti NP, Reddy KR, Aminabhavi TM. 2020. Biofuels, biodiesel and biohydrogen production using bioprocesses. A review. Environmental Chemistry Letters 18:1049−72

doi: 10.1007/s10311-020-00999-7
[104]

Zhou YJ, Buijs NA, Zhu Z, Qin J, Siewers V, et al. 2016. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nature Communications 7:11709

doi: 10.1038/ncomms11709
[105]

Jansen MLA, Bracher JM, Papapetridis I, Verhoeven MD, de Bruijn H, et al. 2017. Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation. FEMS Yeast Research 17(5):fox044

doi: 10.1093/femsyr/fox044
[106]

Robak K, Balcerek M. 2018. Review of second generation bioethanol production from residual biomass. Food Technology and Biotechnology 56(2):174−87

doi: 10.17113/ftb.56.02.18.5428
[107]

Walker GM, Stewart GG. 2016. Saccharomyces cerevisiae in the production of fermented beverages. Beverages 2(4):30

doi: 10.3390/beverages2040030
[108]

Chen GM, Huang ZR, Wu L, Wu Q, Guo WL, et al. 2021. Microbial diversity and flavor of Chinese rice wine (Huangjiu): an overview of current research and future prospects. Current Opinion in Food Science 42:37−50

doi: 10.1016/j.cofs.2021.02.017
[109]

van Wyk N, Grossmann M, Wendland J, von Wallbrunn C, Pretorius IS. 2019. The whiff of wine yeast innovation: strategies for enhancing aroma production by yeast during wine fermentation. Journal of Agricultural and Food Chemistry 67(49):13496−505

doi: 10.1021/acs.jafc.9b06191