-
Saccharomyces cerevisiae has been the cornerstone of fermented food production for centuries and is the most widely used microorganism in the production of traditionally fermented foods, typically in fermented foods such as fermented alcoholic beverages and baked goods. In modern times, advances in biotechnology and synthetic biology have allowed the development of specialized yeast strains that further enhance the properties of fermented foods.
For alcoholic drinks production
-
Saccharomyces cerevisiae is an important component in the production of alcoholic beverages (wine, beer, Chinese rice wine, etc.) and significantly affects the quality, flavor, and aroma of the final product. During the winemaking process, Saccharomyces cerevisiae converts sugar into alcohol to give life to alcoholic beverages, and at the same time produces a series of flavor substances that give alcoholic beverages a special flavor profile, namely, the soul of the alcohol.
Saccharomyces cerevisiae is responsible for the fermentation process that converts the sugars in the raw material into alcohol and other compounds (Fig. 3)[3−6]. Various styles of alcoholic beverages can be produced using different matrices, vinification processes, and conditions, as shown in Table 1. Flavor substances produced by Saccharomyces cerevisiae mainly include alcohols, aldehydes, ketones, volatile acids, higher alcohols, esters, and fatty acids, etc.[12], and their metabolic pathways are summarized in Fig. 3. They are metabolites of Saccharomyces cerevisiae during alcoholic fermentation and play an essential role in the aroma and taste of alcoholic beverages such as fermented and distilled wines. Table 2 summarizes the flavor substances and characteristics from the metabolites of Saccharomyces cerevisiae. Moderate amounts of these substances are thought to enhance the organoleptic qualities of alcoholic beverages, however, excessive amounts can lead to flavor imbalances[4,15,30]. Therefore, it is crucial to manage the metabolites by precisely controlling the fermentation process and post-processing of winemaking to produce high-quality alcoholic beverages.
Figure 3.
(a) Ethanol fermentation by Saccharomyces cerevisiae, and (b) summary of Saccharomyces cerevisiae metabolic pathways yielding fermentation products[107].
Table 1. .Saccharomyces cerevisiae used in the production of alcoholic beverages, media and comments.
Beverage Media Comments Ref. Wine Grape must Modern, large-scale wineries use specially selected starter cultures of Saccharomyces cerevisiae strains available in dried form (e.g., active dry yeast) from specialist yeast supply companies. [107] Beer (ale) Barley malt wort Lager yeasts are likely a natural hybrid (Saccharomyces cerevisiae & Saccharomyces eubayanus).Relatively few strains employed in lager fermentations. Lager strainsutilise maltotriose more efficiently than ale strains, and they ferment atcooler temperatures. Ale yeasts are polyploid strains. Numerous strainsemployed in ale brewing. Ale yeasts ferment at warmer temperaturescompared with lager yeasts. [107] Chinese rice wine (Huangjiu) Glutinous rice (Oryza sativa var. glutinosa) Saccharomyces cerevisiae play a key role in the yeast flora of Chinese rice wine, and are responsible for converting the main carbohydrates into alcohol and other organic compounds, as well as influencing the flavor, aroma and texture of Chinese rice wine. [108] Whisky Grains include barley, corn, rye, and wheat. Scotch whisky producers currently use selected distilling strains of Saccharomyces cerevisiae in three main formats, cream yeast, pressed (cake) and driedyeast. Malt whisky distilleries traditionally use pressed yeast, but largergrain distillers have now adopted cream yeast. Dried yeasts are not asprevalent as pressed and cream formats in whisky fermentations. [15,107] Rum Sugar cane molasses Saccharomyces cerevisiae strains in rum fermentations are developed as startercultures and provide faster fermentation with more higher alcohols andfatty acids, but less esters resulting in lighter style rums. [107] Brandy, Gin,Vodka, etc. fruit juices, grains or molasses, wheat or rye For brandies, cognac, etc. the base wine is produced by pure startercultures of Saccharomyces cerevisiae. For gin, vodka, ete. selected distilling strains of Saccharomyces cerevisiae will be used. [107] Table 2. Fermentation metabolites of Saccharomyces cerevisiae in alcoholic beverages.
Compound class Example Flavour Comments Ref. Higher alcohols n-propanol; Isobutanol;
Iso-amyl alcohol
(3-methylbutan-1-ol); Phenylethanol;Alcoholic; Pharmacy;
Fusel, alcoholic, fruity, banana; Roses, perfumeIn moderate amounts, higher alcohols can enhance the flavor complexity and mouthfeel richness of alcoholic beverages, improving the organoleptic qualities of the drink. However, the presence of excessive amounts of higher alcohols may lead to an imbalance in the flavor of alcoholic beverages, producing an irritating or unpleasant sensation. [15] Esters Ethyl acetate;
Ethyl butyrate;
Ethyl caproate;
Ethyl caprylate;
Ethyl hexanoate;
Ethyl lactate;
Ethyl octanoate;
Iso-amyl acetateSolvent, acetone; Pineapple, banana, mango; Apple, aniseed; Apple; Pineapple, unripe banana; Butter/cream; Sour apple, apricot, fruity; Banana, fruity Esters increase the aromatic complexity of alcoholic beverages, improve the mouthfeel, and give them a rounder, fuller body. A moderate amount of esters gives alcoholic beverages a pleasant aroma of fruits, flowers, vanilla, etc. An excessive amount of esters can bring overly strong fruity or chemical solvent flavors. [109] Carbonyl compounds Acetaldehyde; Benzaldehyde; Green apple; Almond Aldehydes are usually present in trace amounts in alcoholic beverages and give them a floral and fruity flavor. Excessive amounts of aldehydes can give alcoholic beverages an irritating and unpleasant odor, and the winemaking process needs to be carefully controlled. [109] Organic acids Succinic acid,
Citric acid,
AceticacidSourness Acidity regulation of alcoholic beverages, the right amount of organic acid will increase the complexity of the drink and the richness of the mouthfeel, too much organic acid will produce an unpleasant sensation and affect the balance of the taste. [109] Polyols Glycerol A colorless, odorless, and non-toxic compound that has a sweet taste Glycerin has no direct effect on the aroma of alcoholic beverages, but its effect on texture and mouthfeel can indirectly influence the perception of flavor by moderating the harshness of alcohol and making other flavor compounds more pronounced. [15] Vicinaldiketones Diacetyl,
Pentane-2,3-dioneButter, butterscotch Diacetyl is a compound produced in the brewing of beer and some wines that gives liquors a buttery texture and aroma; Excess diacetyl is undesirable in most beers, resulting in an imbalance of flavors and a rancid butter or 'butterscotch' taste. [109] Sulphur compounds Hydrogen sulphide, Dimethyl sulphide, Sulphur dioxide, Thiols Rotten eggs The role of sulfides in alcoholic beverages is complex and varied, and they have a significant impact on the flavor of alcoholic beverages, both positively and negatively. For example in white wines, thiols contribute to the pleasant aroma of tropical fruits and blackcurrants. In excess, however, it can produce unpleasant rotten egg or rotting odors. [15] Phenolic
compounds4-Vinylguiacol Clove-like Some yeasts, including wild yeasts, that are POF+ (phenolic off-flavour) can produce undesirable phenolic flavoursand aromas. However, the clove-like compound, 4-vinylguiacol, is desirable in certain beer styles and can beproduced by hefe ale yeast strains of Saccharomyces cerevisiae. [15] In recent years, alcohol beverage production has been devoted to improving and controlling the fermentation characteristics of Saccharomyces cerevisiae by utilizing advanced technologies and bioengineering methods. To improve the fermentation efficiency of yeast, add its new functional properties and expand the range of applications, and improve the flavor characteristics of alcoholic beverages. Firstly, Saccharomyces cerevisiae was modified by genetic engineering techniques to improve its ethanol yield, fermentation efficiency and enhance resistance. First-generation ethanol production required yeast strains capable of producing ethanol directly from starch without the need to isolate the saccharification process and able to withstand stresses such as high ethanol concentrations and high temperatures during fermentation. By enhancing the expression of genes related to sugar metabolism in Saccharomyces cerevisiae, yeast can be made more efficient at converting sugar to ethanol[31−33]. These improved yeasts are especially valuable in the production of alcoholic beverages such as beer and wine. Yeast strains developed could survive and ferment at higher alcohol concentrations, thus reducing possible interruptions in the fermentation process and improving the continuity and efficiency of the production of alcoholic beverages (e.g., spirits such as whisky, vodka, etc.)[15−17]. Second-generation ethanol production from lignocellulosic will require the development of robust strains of Saccharomyces cerevisiae that are capable of growing and producing ethanol from at least glucose and xylose, and that exhibit heat tolerance and tolerance to inhibitors such as phenolic compounds, furans, and weak acids[16]. This technology not only improves the efficiency of resource utilization, but also provides new ways to produce environmentally friendly alcoholic beverages. However, overcoming major limitations such as incomplete substrate catabolism, low titer of heterologous protein expression, heat resistance, ethanol tolerance, and barriers caused by inhibitor/toxic byproduct accumulation remains a challenge. It is necessary to both improve existing industrial strains and develop new phenotypes utilizing the rich biodiversity available.
Secondly, customizing the flavor of alcoholic beverages by metabolically engineering yeast. Metabolic engineering involves adjusting the metabolic pathways of yeast to optimize or introduce new metabolites. On the one hand, the production of specific flavor compounds (e.g., esters, and higher alcohols) is enhanced by augmenting or introducing new metabolic pathways. Modifying Saccharomyces cerevisiae by metabolic engineering to increase the production of certain ester compounds gives beer or wine a richer fruity flavor, e.g., modified yeasts with low production of higher alcohols, engineered yeasts with high production of aromatic thiols[34−36]. On the other hand, controlling and reducing the content of undesirable flavor substances and harmful compounds in alcoholic beverages, e.g., acid-producing/acid-reducing yeasts, low-producing hydrogen sulfide yeasts, yeast engineered for low urea production[34,35,37]. Also increasing yeast tolerance to environmental stresses such as high alcohol concentration, low pH and temperature fluctuations[38].
Furthermore, multiple fermentation techniques are essential for improving yeast fermentation efficiency and regulating flavors. Mixed yeast inoculated fermentation brewing process brings unique flavor and quality to alcoholic beverages. It usually consists of a commercial, or laboratory Saccharomyces cerevisiae strain and a non-Saccharomyces cerevisiae strain, with mixed promoters used in a co-inoculation or sequential fashion, often in varying proportions of cell numbers. Parapouli et al. compared most studies using co-inoculation and sequential inoculation modes for mixed fermenters of Saccharomyces cerevisiae and non-Saccharomyces cerevisiae to obtain the results that increased the production of volatile compounds, esters, and terpenes, reduction of volatile acidity, total acidity and pH[6,39]. Also, the use of Saccharomyces cerevisiae in combination with other microorganisms, such as lactic acid bacteria, can create unique flavor combinations. This multi-fermentation technique has been adopted by several craft beer producers to develop new beers with complex mouthfeel and unique flavor layers[40].
In addition, the integrated use of Saccharomyces cerevisiae with novel physical processing techniques to enhance the overall quality of alcoholic beverages. For example, Saccharomyces cerevisiae combined with technologies like ultrasound and pulsed electric field treatments to improve and accelerate the fermentation and maturation process of alcoholic products[41].
However, a current challenge is that overgrowth of yeast may lead to uncontrolled fermentation processes, affecting flavor and quality. New sensing technologies and real-time monitoring systems are applied to enable precise control of the yeast fermentation process to alleviate this difficulty, e.g. through Raman spectroscopy and machine learning to assess yeast activity[42,43]. Moreover, the waste and by-products generated by yeast during the production process need to be properly disposed of to avoid negative impacts on the environment, and the development of the utilization of yeast by-products is imminent.
Overall, the use of Saccharomyces cerevisiae in the production of alcoholic beverages continues to contribute to technological innovation and enhancement of beverage quality. Future developments will focus on enhancing flavor diversity, increasing production efficiency and sustainability, and using advanced technologies to improve the fermentation properties of yeast.
For the production of fermented flour products
-
Saccharomyces cerevisiae also known as baker's yeast, is an essential microorganism in the production of fermented flour products such as steamed bread and bread. Flour products fermented with Saccharomyces cerevisiae exhibit excellent qualities in terms of texture, flavor, and nutrition (Fig. 4). During dough making, Saccharomyces cerevisiae plays a key role in the expansion, elasticity, and extensibility of the dough. Saccharomyces cerevisiae uses sugars (such as glucose, fructose, maltose, sucrose, etc.) in the dough to produce carbon dioxide and ethanol through glycolysis. Among them, carbon dioxide is captured by the gluten lattice network in the dough, causing the dough to expand and produce the typical bread pore structure, and the rate of carbon dioxide production determines the rate of dough fermentation[13]. Alcohol evaporates as the temperature rises during the baking process, contributing to the porous structure and characteristic flavor of the bread[44]. In addition, the metabolites such as glycerin produced by Saccharomyces cerevisiae in the early stage of fermentation can effectively improve the properties of the dough[45].
Figure 4.
Contribution of Saccharomyces cerevisiae to fermented flour products characteristics from several aspects.
During fermentation, Saccharomyces cerevisiae also produces other metabolic by-products in the baking of flour products, such as esters, aldehydes, ketones, and organic acids, which together form the unique flavor profile of pasta products[14]. Saccharomyces cerevisiae produces a variety of esters and other aroma compounds during fermentation, which contribute most to the aroma of flour products. Of these, the most important are alcohols and aldehydes such as 2,3-butanedione and 3-hydroxy-2-butanone and esters[46]. Some non-volatile compounds act as precursors for later reactions to form new flavor compounds. Sugars remaining in the fermentation react in the Maillard reaction and have a significant impact on the aroma[47]. Organic acids like lactic acid and acetic acid are produced by Saccharomyces cerevisiae to increase the acidity of the flour product, which in turn affects its flavor profile. The types and amounts of volatile flavor substances produced by different Saccharomyces cerevisiae strains fermentations are different, and their range of applicability varies. Therefore, in the fermentation process of flour products, the selection of strains is particularly important. Traditional Saccharomyces cerevisiae yeasts typically produce mild alcoholic and ester aromas that are suitable for most standard flour products. Further, specialized strains of Saccharomyces cerevisiae have been selected and developed based on consumer demand to produce specific flavor profiles, such as enhanced fruity or more complex ester aromas, for special flour products or craft breads. Compared to these commercial yeast strains, wild yeasts produce more complex and diverse flavors that are suitable for longer-fermented flour products, such as traditional sourdough breads made by co-fermentation of Saccharomyces cerevisiae with Lactobacillus with a distinctive flavor profile[48]. Therefore, the selection of strains is particularly significant in the fermentation process of flour products.
More interestingly, existing studies have shown that Saccharomyces cerevisiae can increase the nutrient content of flour products. A previous study found that during the fermentation process, the folate content in the dough increased seven-fold, which well compensated for the loss of folate caused by baking[49]. In addition, Saccharomyces cerevisiae can also reduce the content of phytic acid through the action of phytase, thereby increasing the bioavailability of trace elements such as magnesium and phosphorus. Katina et al.[49] also found that fermenting rye bran with Saccharomyces cerevisiae can increase the content of free ferulic acid.
The fermentation of Saccharomyces cerevisiae in the dough also improves the preservative capacity of the pastry and prolongs its shelf life. Studies have found that the aging speed of bread is significantly slowed down after ethanol treatment. During the fermentation process, Saccharomyces cerevisiae produces a large amount of ethanol, lipase, protease, and other enzymes, which can effectively alleviate the aging of flour products. Heitmann et al.[13] found that bread fermented with different yeast strains have significant differences in hardness during storage, which indicated the selection of strains is particularly important again. The organic acids produced by yeast fermentation can lower the pH of bread and increase its antimicrobial properties, thus improving its freshness.
Although Saccharomyces cerevisiae has been involved in the bakery industry for a long time, its performance is somewhat limited due to various industrial constraints and requirements. First, the fermentation of Saccharomyces cerevisiae is a time-consuming process that may not be suitable for all commercial operations seeking rapid production of baked goods. Second, on an industrial scale, Saccharomyces cerevisiae is exposed to a variety of multiple and fluctuating environmental stresses, which ultimately reduces product yields and negatively impacts the quality of baked goods[50]. What's more, the fermentation process of Saccharomyces cerevisiae is sensitive to environmental factors such as temperature and humidity, which need to be carefully controlled to ensure consistent results. If not handled properly, the shelf life of fermented flour products may be limited by continued yeast activity or microbial spoilage. To overcome these limitations, many studies have utilized advanced biotechnology to modify Saccharomyces cerevisiae strains to increase flavor induction, tolerance to various industrial stresses, and enhance fermentation capabilities. (I) Strain improvement for flavor induction: pathway engineering using recombinant DNA technology to introduce four genes[51], overexpression of ILV2, ILV3, ILV5, and BAT2 genes involved in valine metabolism[52], and in silico stoichiometric modeling[53] were used to obtain mutant strains with high production of vanillin to enhance the production of vanillin, a natural flavor reagent; Metabolic engineering of Saccharomyces cerevisiae by heterologous overexpression of a gene encoding phenylalanine for the production of trans-cinnamic acid derivatives (cinnamaldehyde, cinnamyl alcohol, and hydrocinnamyl alcohol) for the production of high-value aromatic compounds[54]. (II) Strain improvement for stress tolerance: producing self-cloning baker's yeast strains that harbor the TDH3p-PDE2 gene heterozygously and homozygously by self-cloning procedure[55], deletion of NTH1 in combination of MAL62 gene over-expression[56], alteration of the POG1 gene by breeding method[57] to increase freezing tolerance during dough fermentation. (III) Strain improvement for fermentation efficiency: disruption of MIG1 and or TUP1 and/or SSN6 genes[58], over-expressing the GSY2 and SNF1 gene and deleting NTH1 gene[58,59] to improve maltose metabolism and leavening ability of yeast during dough fermentation.
In addition, precise control of Saccharomyces cerevisiae fermentation parameters are required in the baking industry, where bioreactors and computer control systems can be used to automate the fermentation process, control the texture and flavor of pasta products, and improve production efficiency and product consistency.
-
All data generated or analyzed during this study are included in this published article.
-
About this article
Cite this article
Que Z, Wang S, Wei M, Fang Y, Ma T, et al. 2024. The powerful function of Saccharomyces cerevisiae in food science and other fields: a critical review. Food Innovation and Advances 3(2): 167−180 doi: 10.48130/fia-0024-0016
The powerful function of Saccharomyces cerevisiae in food science and other fields: a critical review
- Received: 07 April 2024
- Revised: 13 May 2024
- Accepted: 23 May 2024
- Published online: 20 June 2024
Abstract: Saccharomyces cerevisiae is the earliest domesticated fungus, researched deeply and widely used fungus. When used in food fermentation, Saccharomyces cerevisiae has an important influence on the quality, flavor, and aroma of products. Future developments will focus on enhancing flavor diversity, increasing production efficiency, sustainability, and product consistency, as well as improving the fermentation characteristics by using advanced technologies. Saccharomyces cerevisiae is an ideal substrate for synthetic biology research, usually used in the production of lactic acid, terpenes, steroids, vaccines, etc., which helps to reduce production cost, shorten the production cycle, improve production capacity, and has a very broad application prospect. In addition, in the field of environmental protection, biofuel ethanol is one of the promising and popular fuels with potential for energy and environmental security. However, there are major challenges for Saccharomyces cerevisiae that use lignocellulosic biomass as feedstock to produce biofuel ethanol.