[1]

Ozgur R, Uzilday B, Yalcinkaya T, Akyol TY, Yildirim H, et al. 2021. Differential responses of the scavenging systems for reactive oxygen species (ROS) and reactive carbonyl species (RCS) to UV-B irradiation in Arabidopsis thaliana and its high altitude perennial relative Arabis alpina. Photochemical & Photobiological Sciences 20:889−901

doi: 10.1007/s43630-021-00067-1
[2]

Rizzini L, Favory JJ, Cloix C, Faggionato D, O'Hara A, et al. 2011. Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103−06

doi: 10.1126/science.1200660
[3]

Ulm R, Jenkins GI. 2015. Q&A: how do plants sense and respond to UV-B radiation? BMC Biology 13:45

doi: 10.1186/s12915-015-0156-y
[4]

Oyama T, Shimura Y, Okada K. 1997. The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes & Development 11:2983−95

doi: 10.1101/gad.11.22.2983
[5]

Lee J, He K, Stolc V, Lee H, Figueroa P, et al. 2007. Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. The Plant Cell 19:731−49

doi: 10.1105/tpc.106.047688
[6]

Saini P, Bhatia S, Mahajan M, Kaushik A, Sahu SK, et al. 2020. ELONGATED HYPOCOTYL5 negatively regulates DECREASE WAX BIOSYNTHESIS to increase survival during UV-B stress. Plant Physiology 184:2091−106

doi: 10.1104/pp.20.01304
[7]

Wang TJ, Huang S, Zhang A, Guo P, Liu Y, et al. 2021. JMJ17–WRKY40 and HY5–ABI5 modules regulate the expression of ABA-responsive genes in Arabidopsis. New Phytologist 230:567−84

doi: 10.1111/nph.17177
[8]

Zhang H, Zhu J, Gong Z, Zhu JK. 2022. Abiotic stress responses in plants. Nature Reviews Genetics 23:104−19

doi: 10.1038/s41576-021-00413-0
[9]

Wang C, Lu G, Hao Y, Guo H, Guo Y, et al. 2017. ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton. Planta 246:453−69

doi: 10.1007/s00425-017-2704-x
[10]

Zong W, Tang N, Yang J, Peng L, Ma S, et al. 2016. Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription factor targets drought-resistance-related genes. Plant Physiology 171:2810−25

doi: 10.1104/pp.16.00469
[11]

Gao S, Li C, Chen X, Li S, Liang N, et al. 2023. Basic helix-loop-helix transcription factor PxbHLH02 enhances drought tolerance in Populus (Populus simonii × P. nigra). Tree Physiology 43:185−202

doi: 10.1093/treephys/tpac107
[12]

Wang Z, He Z, Qu M, Liu Z, Wang C, et al. 2021. A method for determining the cutting efficiency of the CRISPR/Cas system in birch and poplar. Forestry Research 1:16

doi: 10.48130/FR-2021-0016
[13]

Li X, Ma M, Shao W, Wang H, Fan R, et al. 2018. Molecular cloning and functional analysis of a UV-B photoreceptor gene, BpUVR8 (UV Resistance Locus 8), from birch and its role in ABA response. Plant Science 274:294−308

doi: 10.1016/j.plantsci.2018.06.006
[14]

Chen X, Wang H, Li X, Ma K, Zhan Y, et al. 2019. Molecular cloning and functional analysis of 4-Coumarate: CoA ligase 4 (4CL-like 1) from Fraxinus mandshurica and its role in abiotic stress tolerance and cell wall synthesis. BMC Plant Biology 19:231

doi: 10.1186/s12870-019-1812-0
[15]

Podolec R, Demarsy E, Ulm R. 2021. Perception and signaling of Ultraviolet-B radiation in plants. Annual Review of Plant Biology 72:793−822

doi: 10.1146/annurev-arplant-050718-095946
[16]

Jenkins GI. 2009. Signal transduction in responses to UV-B radiation. Annual Review of Plant Biology 60:407−31

doi: 10.1146/annurev.arplant.59.032607.092953
[17]

Job N, Lingwan M, Masakapalli SK, Datta S. 2022. Transcription factors BBX11 and HY5 interdependently regulate the molecular and metabolic responses to UV-B. Plant Physiology 189:2467−80

doi: 10.1093/plphys/kiac195
[18]

Dong Q, Duan D, Zheng W, Huang D, Wang Q, et al. 2022. Overexpression of MdVQ37 reduces drought tolerance by altering leaf anatomy and SA homeostasis in transgenic apple. Tree Physiology 42:160−74

doi: 10.1093/treephys/tpab098
[19]

Hu X, Cui Y, Lu X, Song W, Lei L, et al. 2020. Maize WI5 encodes an endo-1,4-β-xylanase required for secondary cell wall synthesis and water transport in xylem. Journal of Integrative Plant Biology 62:1607−24

doi: 10.1111/jipb.12923
[20]

Cesarino I. 2019. Structural features and regulation of lignin deposited upon biotic and abiotic stresses. Current Opinion in Biotechnology 56:209−14

doi: 10.1016/j.copbio.2018.12.012
[21]

Yamasaki S, Noguchi N, Mimaki K. 2007. Continuous UV-B irradiation induces morphological changes and the accumulation of polyphenolic compounds on the surface of cucumber cotyledons. Journal of Radiation Research 48:443−54

doi: 10.1269/jrr.07046
[22]

Hilal M, Parrado MF, Rosa M, Gallardo M, Orce L, et al. 2004. Epidermal lignin deposition in quinoa cotyledons in response to UV-B radiation. Photochemistry and Photobiology 79:205−10

doi: 10.1111/j.1751-1097.2004.tb00011.x
[23]

Wang H, Hao J, Chen X, Hao Z, Wang X, et al. 2007. Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Molecular Biology 65:799−815

doi: 10.1007/s11103-007-9244-x
[24]

Zagoskina NV, Dubravina GA, Alyavina AK, Goncharuk EA. 2003. Effect of ultraviolet (UV-B) radiation on the formation and localization of phenolic compounds in tea plant callus cultures. Russian Journal of Plant Physiology 50:270−75

doi: 10.1023/A:1022945819389
[25]

Burko Y, Seluzicki A, Zander M, Pedmale UV, Ecker JR, et al. 2020. Chimeric activators and repressors define HY5 activity and reveal a light-regulated feedback mechanism. The Plant Cell 32:967−83

doi: 10.1105/tpc.19.00772
[26]

Li Y, Shi Y, Li M, Fu D, Wu S, et al. 2021. The CRY2–COP1–HY5–BBX7/8 module regulates blue light-dependent cold acclimation in Arabidopsis. The Plant Cell 33:3555−73

doi: 10.1093/plcell/koab215
[27]

Zhang L, Jiang X, Liu Q, Ahammed GJ, Lin R, et al. 2020. The HY5 and MYB15 transcription factors positively regulate cold tolerance in tomato via the CBF pathway. Plant, Cell & Environment 43:2712−26

doi: 10.1111/pce.13868
[28]

Yang J, Qu X, Li T, Gao Y, Du H, et al. 2023. HY5-HDA9 orchestrates the transcription of HsfA2 to modulate salt stress response in Arabidopsis. Journal of Integrative Plant Biology 65:45−63

doi: 10.1111/jipb.13372
[29]

Singh D, Dwivedi S, Sinha H, Singh N, Trivedi PK. 2024. Mutation in shoot-to-root mobile transcription factor, ELONGATED HYPOCOTYL 5, leads to low nicotine levels in tobacco. Journal of Hazardous Materials 465:133255

doi: 10.1016/j.jhazmat.2023.133255
[30]

Taylor-Teeples M, Lin L, De Lucas M, Turco G, Toal TW, et al. 2015. An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517:571−75

doi: 10.1038/nature14099
[31]

Xiao Y, Chu L, Zhang Y, Bian Y, Xiao J, et al. 2021. HY5: a pivotal regulator of light-dependent development in higher plants. Nature 12:800989

doi: 10.3389/fpls.2021.800989
[32]

Bursch K, Toledo-Ortiz G, Pireyre M, Lohr M, Braatz C, et al. 2020. Identification of BBX proteins as rate-limiting cofactors of HY5. Nature Plants 6:921−28

doi: 10.1038/s41477-020-0725-0
[33]

Bian Z, Wang Y, Zhang X, Grundy S, Hardy K, et al. 2021. A transcriptome analysis revealing the new insight of green light on tomato plant growth and drought stress tolerance. Frontiers in Plant Science 12:649283

doi: 10.3389/fpls.2021.649283
[34]

Thompson AJ, Jackson AC, Symonds RC, Mulholland BJ, Dadswell AR, et al. 2000. Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. The Plant Journal 23:363−74

doi: 10.1046/j.1365-313x.2000.00789.x
[35]

Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, et al. 2001. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. The Plant Journal 27:325−33

doi: 10.1046/j.1365-313x.2001.01096.x
[36]

Frey A, Effroy D, Lefebvre V, Seo M, Perreau F, et al. 2012. Epoxycarotenoid cleavage by NCED5 fine-tunes ABA accumulation and affects seed dormancy and drought tolerance with other NCED family members. The Plant Journal 70:501−12

doi: 10.1111/j.1365-313X.2011.04887.x
[37]

Lefebvre V, North H, Frey A, Sotta B, Seo M, et al. 2006. Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. The Plant Journal 45:309−19

doi: 10.1111/j.1365-313X.2005.02622.x
[38]

Collin A, Daszkowska-Golec A, Kurowska M, Szarejko I. 2020. Barley ABI5 (Abscisic Acid INSENSITIVE 5) is involved in abscisic acid-dependent drought response. Frontiers in Plant Science 11:1138

doi: 10.3389/fpls.2020.01138
[39]

Mittal A, Gampala SSL, Ritchie GL, Payton P, Burke JJ, Rock CD. 2014. Related to ABA-Insensitive3(ABI 3)/Viviparous1 and AtABI 5 transcription factor coexpression in cotton enhances drought stress adaptation. Plant Biotechnology Journal 12:578−89

doi: 10.1111/pbi.12162
[40]

Bhagat PK, Verma D, Sharma D, Sinha AK. 2021. HY5 and ABI5 transcription factors physically interact to fine tune light and ABA signaling in Arabidopsis. Plant Molecular Biology 107:117−27

doi: 10.1007/s11103-021-01187-z
[41]

Chen H, Zhang J, Neff MM, Hong SW, Zhang H, et al. 2008. Integration of light and abscisic acid signaling during seed germination and early seedling development. Proceedings of the National Academy of Sciences of the United States of America 105:4495−500

doi: 10.1073/pnas.0710778105
[42]

Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, et al. 2006. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. The Plant Cell 18:1292−309

doi: 10.1105/tpc.105.035881
[43]

Meena RP, Ghosh G, Vishwakarma H, Padaria JC. 2022. Expression of a Pennisetum glaucum gene DREB2A confers enhanced heat, drought and salinity tolerance in transgenic Arabidopsis. Molecular Biology Reports 49:7347−58

doi: 10.1007/s11033-022-07527-6
[44]

Aubert Y, Vile D, Pervent M, Aldon D, Ranty B, et al. 2010. RD20, a stress-inducible caleosin, participates in stomatal control, transpiration and drought tolerance in Arabidopsis thaliana. Plant and Cell Physiology 51:1975−87

doi: 10.1093/pcp/pcq155
[45]

Chen D, Xu G, Tang W, Jing Y, Ji Q, et al. 2013. Antagonistic basic helix-loop-helix/bzip transcription factors form transcriptional modules that integrate light and reactive oxygen species signaling in Arabidopsis. The Plant Cell 25:1657−73

doi: 10.1105/tpc.112.104869
[46]

Sweetman C, Waterman CD, Wong DCJ, Day DA, Jenkins CLD, et al. 2022. Altering the balance between AOX1A and NDB2 expression affects a common set of transcripts in Arabidopsis. Frontiers in Plant Science 13:876843

doi: 10.3389/fpls.2022.876843
[47]

Chen S, Ma T, Song S, Li X, Fu P, et al. 2021. Arabidopsis downy mildew effector HaRxLL470 suppresses plant immunity by attenuating the DNA-binding activity of bZIP transcription factor HY5. New Phytologist 230:1562−77

doi: 10.1111/nph.17280