[1]
|
Ozgur R, Uzilday B, Yalcinkaya T, Akyol TY, Yildirim H, et al. 2021. Differential responses of the scavenging systems for reactive oxygen species (ROS) and reactive carbonyl species (RCS) to UV-B irradiation in Arabidopsis thaliana and its high altitude perennial relative Arabis alpina. Photochemical & Photobiological Sciences 20:889−901 doi: 10.1007/s43630-021-00067-1
CrossRef Google Scholar
|
[2]
|
Rizzini L, Favory JJ, Cloix C, Faggionato D, O'Hara A, et al. 2011. Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103−06 doi: 10.1126/science.1200660
CrossRef Google Scholar
|
[3]
|
Ulm R, Jenkins GI. 2015. Q&A: how do plants sense and respond to UV-B radiation? BMC Biology 13:45 doi: 10.1186/s12915-015-0156-y
CrossRef Google Scholar
|
[4]
|
Oyama T, Shimura Y, Okada K. 1997. The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes & Development 11:2983−95 doi: 10.1101/gad.11.22.2983
CrossRef Google Scholar
|
[5]
|
Lee J, He K, Stolc V, Lee H, Figueroa P, et al. 2007. Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development. The Plant Cell 19:731−49 doi: 10.1105/tpc.106.047688
CrossRef Google Scholar
|
[6]
|
Saini P, Bhatia S, Mahajan M, Kaushik A, Sahu SK, et al. 2020. ELONGATED HYPOCOTYL5 negatively regulates DECREASE WAX BIOSYNTHESIS to increase survival during UV-B stress. Plant Physiology 184:2091−106 doi: 10.1104/pp.20.01304
CrossRef Google Scholar
|
[7]
|
Wang TJ, Huang S, Zhang A, Guo P, Liu Y, et al. 2021. JMJ17–WRKY40 and HY5–ABI5 modules regulate the expression of ABA-responsive genes in Arabidopsis. New Phytologist 230:567−84 doi: 10.1111/nph.17177
CrossRef Google Scholar
|
[8]
|
Zhang H, Zhu J, Gong Z, Zhu JK. 2022. Abiotic stress responses in plants. Nature Reviews Genetics 23:104−19 doi: 10.1038/s41576-021-00413-0
CrossRef Google Scholar
|
[9]
|
Wang C, Lu G, Hao Y, Guo H, Guo Y, et al. 2017. ABP9, a maize bZIP transcription factor, enhances tolerance to salt and drought in transgenic cotton. Planta 246:453−69 doi: 10.1007/s00425-017-2704-x
CrossRef Google Scholar
|
[10]
|
Zong W, Tang N, Yang J, Peng L, Ma S, et al. 2016. Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription factor targets drought-resistance-related genes. Plant Physiology 171:2810−25 doi: 10.1104/pp.16.00469
CrossRef Google Scholar
|
[11]
|
Gao S, Li C, Chen X, Li S, Liang N, et al. 2023. Basic helix-loop-helix transcription factor PxbHLH02 enhances drought tolerance in Populus (Populus simonii × P. nigra). Tree Physiology 43:185−202 doi: 10.1093/treephys/tpac107
CrossRef Google Scholar
|
[12]
|
Wang Z, He Z, Qu M, Liu Z, Wang C, et al. 2021. A method for determining the cutting efficiency of the CRISPR/Cas system in birch and poplar. Forestry Research 1:16 doi: 10.48130/FR-2021-0016
CrossRef Google Scholar
|
[13]
|
Li X, Ma M, Shao W, Wang H, Fan R, et al. 2018. Molecular cloning and functional analysis of a UV-B photoreceptor gene, BpUVR8 (UV Resistance Locus 8), from birch and its role in ABA response. Plant Science 274:294−308 doi: 10.1016/j.plantsci.2018.06.006
CrossRef Google Scholar
|
[14]
|
Chen X, Wang H, Li X, Ma K, Zhan Y, et al. 2019. Molecular cloning and functional analysis of 4-Coumarate: CoA ligase 4 (4CL-like 1) from Fraxinus mandshurica and its role in abiotic stress tolerance and cell wall synthesis. BMC Plant Biology 19:231 doi: 10.1186/s12870-019-1812-0
CrossRef Google Scholar
|
[15]
|
Podolec R, Demarsy E, Ulm R. 2021. Perception and signaling of Ultraviolet-B radiation in plants. Annual Review of Plant Biology 72:793−822 doi: 10.1146/annurev-arplant-050718-095946
CrossRef Google Scholar
|
[16]
|
Jenkins GI. 2009. Signal transduction in responses to UV-B radiation. Annual Review of Plant Biology 60:407−31 doi: 10.1146/annurev.arplant.59.032607.092953
CrossRef Google Scholar
|
[17]
|
Job N, Lingwan M, Masakapalli SK, Datta S. 2022. Transcription factors BBX11 and HY5 interdependently regulate the molecular and metabolic responses to UV-B. Plant Physiology 189:2467−80 doi: 10.1093/plphys/kiac195
CrossRef Google Scholar
|
[18]
|
Dong Q, Duan D, Zheng W, Huang D, Wang Q, et al. 2022. Overexpression of MdVQ37 reduces drought tolerance by altering leaf anatomy and SA homeostasis in transgenic apple. Tree Physiology 42:160−74 doi: 10.1093/treephys/tpab098
CrossRef Google Scholar
|
[19]
|
Hu X, Cui Y, Lu X, Song W, Lei L, et al. 2020. Maize WI5 encodes an endo-1,4-β-xylanase required for secondary cell wall synthesis and water transport in xylem. Journal of Integrative Plant Biology 62:1607−24 doi: 10.1111/jipb.12923
CrossRef Google Scholar
|
[20]
|
Cesarino I. 2019. Structural features and regulation of lignin deposited upon biotic and abiotic stresses. Current Opinion in Biotechnology 56:209−14 doi: 10.1016/j.copbio.2018.12.012
CrossRef Google Scholar
|
[21]
|
Yamasaki S, Noguchi N, Mimaki K. 2007. Continuous UV-B irradiation induces morphological changes and the accumulation of polyphenolic compounds on the surface of cucumber cotyledons. Journal of Radiation Research 48:443−54 doi: 10.1269/jrr.07046
CrossRef Google Scholar
|
[22]
|
Hilal M, Parrado MF, Rosa M, Gallardo M, Orce L, et al. 2004. Epidermal lignin deposition in quinoa cotyledons in response to UV-B radiation. Photochemistry and Photobiology 79:205−10 doi: 10.1111/j.1751-1097.2004.tb00011.x
CrossRef Google Scholar
|
[23]
|
Wang H, Hao J, Chen X, Hao Z, Wang X, et al. 2007. Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Molecular Biology 65:799−815 doi: 10.1007/s11103-007-9244-x
CrossRef Google Scholar
|
[24]
|
Zagoskina NV, Dubravina GA, Alyavina AK, Goncharuk EA. 2003. Effect of ultraviolet (UV-B) radiation on the formation and localization of phenolic compounds in tea plant callus cultures. Russian Journal of Plant Physiology 50:270−75 doi: 10.1023/A:1022945819389
CrossRef Google Scholar
|
[25]
|
Burko Y, Seluzicki A, Zander M, Pedmale UV, Ecker JR, et al. 2020. Chimeric activators and repressors define HY5 activity and reveal a light-regulated feedback mechanism. The Plant Cell 32:967−83 doi: 10.1105/tpc.19.00772
CrossRef Google Scholar
|
[26]
|
Li Y, Shi Y, Li M, Fu D, Wu S, et al. 2021. The CRY2–COP1–HY5–BBX7/8 module regulates blue light-dependent cold acclimation in Arabidopsis. The Plant Cell 33:3555−73 doi: 10.1093/plcell/koab215
CrossRef Google Scholar
|
[27]
|
Zhang L, Jiang X, Liu Q, Ahammed GJ, Lin R, et al. 2020. The HY5 and MYB15 transcription factors positively regulate cold tolerance in tomato via the CBF pathway. Plant, Cell & Environment 43:2712−26 doi: 10.1111/pce.13868
CrossRef Google Scholar
|
[28]
|
Yang J, Qu X, Li T, Gao Y, Du H, et al. 2023. HY5-HDA9 orchestrates the transcription of HsfA2 to modulate salt stress response in Arabidopsis. Journal of Integrative Plant Biology 65:45−63 doi: 10.1111/jipb.13372
CrossRef Google Scholar
|
[29]
|
Singh D, Dwivedi S, Sinha H, Singh N, Trivedi PK. 2024. Mutation in shoot-to-root mobile transcription factor, ELONGATED HYPOCOTYL 5, leads to low nicotine levels in tobacco. Journal of Hazardous Materials 465:133255 doi: 10.1016/j.jhazmat.2023.133255
CrossRef Google Scholar
|
[30]
|
Taylor-Teeples M, Lin L, De Lucas M, Turco G, Toal TW, et al. 2015. An Arabidopsis gene regulatory network for secondary cell wall synthesis. Nature 517:571−75 doi: 10.1038/nature14099
CrossRef Google Scholar
|
[31]
|
Xiao Y, Chu L, Zhang Y, Bian Y, Xiao J, et al. 2021. HY5: a pivotal regulator of light-dependent development in higher plants. Nature 12:800989 doi: 10.3389/fpls.2021.800989
CrossRef Google Scholar
|
[32]
|
Bursch K, Toledo-Ortiz G, Pireyre M, Lohr M, Braatz C, et al. 2020. Identification of BBX proteins as rate-limiting cofactors of HY5. Nature Plants 6:921−28 doi: 10.1038/s41477-020-0725-0
CrossRef Google Scholar
|
[33]
|
Bian Z, Wang Y, Zhang X, Grundy S, Hardy K, et al. 2021. A transcriptome analysis revealing the new insight of green light on tomato plant growth and drought stress tolerance. Frontiers in Plant Science 12:649283 doi: 10.3389/fpls.2021.649283
CrossRef Google Scholar
|
[34]
|
Thompson AJ, Jackson AC, Symonds RC, Mulholland BJ, Dadswell AR, et al. 2000. Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid. The Plant Journal 23:363−74 doi: 10.1046/j.1365-313x.2000.00789.x
CrossRef Google Scholar
|
[35]
|
Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, et al. 2001. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. The Plant Journal 27:325−33 doi: 10.1046/j.1365-313x.2001.01096.x
CrossRef Google Scholar
|
[36]
|
Frey A, Effroy D, Lefebvre V, Seo M, Perreau F, et al. 2012. Epoxycarotenoid cleavage by NCED5 fine-tunes ABA accumulation and affects seed dormancy and drought tolerance with other NCED family members. The Plant Journal 70:501−12 doi: 10.1111/j.1365-313X.2011.04887.x
CrossRef Google Scholar
|
[37]
|
Lefebvre V, North H, Frey A, Sotta B, Seo M, et al. 2006. Functional analysis of Arabidopsis NCED6 and NCED9 genes indicates that ABA synthesized in the endosperm is involved in the induction of seed dormancy. The Plant Journal 45:309−19 doi: 10.1111/j.1365-313X.2005.02622.x
CrossRef Google Scholar
|
[38]
|
Collin A, Daszkowska-Golec A, Kurowska M, Szarejko I. 2020. Barley ABI5 (Abscisic Acid INSENSITIVE 5) is involved in abscisic acid-dependent drought response. Frontiers in Plant Science 11:1138 doi: 10.3389/fpls.2020.01138
CrossRef Google Scholar
|
[39]
|
Mittal A, Gampala SSL, Ritchie GL, Payton P, Burke JJ, Rock CD. 2014. Related to ABA-Insensitive3(ABI 3)/Viviparous1 and AtABI 5 transcription factor coexpression in cotton enhances drought stress adaptation. Plant Biotechnology Journal 12:578−89 doi: 10.1111/pbi.12162
CrossRef Google Scholar
|
[40]
|
Bhagat PK, Verma D, Sharma D, Sinha AK. 2021. HY5 and ABI5 transcription factors physically interact to fine tune light and ABA signaling in Arabidopsis. Plant Molecular Biology 107:117−27 doi: 10.1007/s11103-021-01187-z
CrossRef Google Scholar
|
[41]
|
Chen H, Zhang J, Neff MM, Hong SW, Zhang H, et al. 2008. Integration of light and abscisic acid signaling during seed germination and early seedling development. Proceedings of the National Academy of Sciences of the United States of America 105:4495−500 doi: 10.1073/pnas.0710778105
CrossRef Google Scholar
|
[42]
|
Sakuma Y, Maruyama K, Osakabe Y, Qin F, Seki M, et al. 2006. Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. The Plant Cell 18:1292−309 doi: 10.1105/tpc.105.035881
CrossRef Google Scholar
|
[43]
|
Meena RP, Ghosh G, Vishwakarma H, Padaria JC. 2022. Expression of a Pennisetum glaucum gene DREB2A confers enhanced heat, drought and salinity tolerance in transgenic Arabidopsis. Molecular Biology Reports 49:7347−58 doi: 10.1007/s11033-022-07527-6
CrossRef Google Scholar
|
[44]
|
Aubert Y, Vile D, Pervent M, Aldon D, Ranty B, et al. 2010. RD20, a stress-inducible caleosin, participates in stomatal control, transpiration and drought tolerance in Arabidopsis thaliana. Plant and Cell Physiology 51:1975−87 doi: 10.1093/pcp/pcq155
CrossRef Google Scholar
|
[45]
|
Chen D, Xu G, Tang W, Jing Y, Ji Q, et al. 2013. Antagonistic basic helix-loop-helix/bzip transcription factors form transcriptional modules that integrate light and reactive oxygen species signaling in Arabidopsis. The Plant Cell 25:1657−73 doi: 10.1105/tpc.112.104869
CrossRef Google Scholar
|
[46]
|
Sweetman C, Waterman CD, Wong DCJ, Day DA, Jenkins CLD, et al. 2022. Altering the balance between AOX1A and NDB2 expression affects a common set of transcripts in Arabidopsis. Frontiers in Plant Science 13:876843 doi: 10.3389/fpls.2022.876843
CrossRef Google Scholar
|
[47]
|
Chen S, Ma T, Song S, Li X, Fu P, et al. 2021. Arabidopsis downy mildew effector HaRxLL470 suppresses plant immunity by attenuating the DNA-binding activity of bZIP transcription factor HY5. New Phytologist 230:1562−77 doi: 10.1111/nph.17280
CrossRef Google Scholar
|