[1]

Mohammadi M, Shareghi B, Saboury AA. 2020. Comparative studies on the interaction of spermidine with carboxypeptidase A using multispectroscopic and docking methods. International Journal of Biological Macromolecules 147:821−31

doi: 10.1016/j.ijbiomac.2019.09.242
[2]

Mohammadi M, Shareghi B, Farhadian S, Saboury AA. 2021. The effect of sorbitol on the structure and activity of carboxypeptidase A: Insights from a spectroscopic and computational approach. Journal of Molecular Liquids 330:115710

doi: 10.1016/j.molliq.2021.115710
[3]

Dai L, Niu D, Huang JW, Li X, Shen P, et al. 2023. Cryo-EM structure and rational engineering of a superefficient ochratoxin A-detoxifying amidohydrolase. Journal of Hazardous Materials 458:131836

doi: 10.1016/j.jhazmat.2023.131836
[4]

Manzo RM, Ceruti RJ, Bonazza HL, Adriano WS, Sihufe GA, et al. 2018. Immobilization of Carboxypeptidase A into Modified Chitosan Matrixes by Covalent Attachment. Applied Biochemistry and Biotechnology 185(4):1029−43

doi: 10.1007/s12010-018-2708-4
[5]

Nezhad NG, Rahman RNZRA, Normi YM, Oslan SN, Shariff FM, et al. 2023. Recent advances in simultaneous thermostability-activity improvement of industrial enzymes through structure modification. International Journal of Biological Macromolecules 232:123440

doi: 10.1016/j.ijbiomac.2023.123440
[6]

Xu Z, Cen YK, Zou SP, Xue YP, Zheng YG. 2020. Recent advances in the improvement of enzyme thermostability by structure modification. Critical Reviews in Biotechnology 40(1):83−98

doi: 10.1080/07388551.2019.1682963
[7]

Nezhad NG, Rahman RNZRA, Normi YM, Oslan SN, Shariff FM, et al. 2022. Thermostability engineering of industrial enzymes through structure modification. Applied Microbiology and Biotechnology 106:4845−66

doi: 10.1007/s00253-022-12067-x
[8]

Song Z, Zhang Q, Wu W, Pu Z, Yu H. 2023. Rational design of enzyme activity and enantioselectivity. Frontiers in Bioengineering and Biotechnology 11:1129249

doi: 10.3389/fbioe.2023.1129149
[9]

Xu S, Zheng P, Sun P, Chen P, Wu D. 2023. Biosynthesis of 3-hydroxyphloretin using rational design of 4-hydroxyphenylacetate 3-monooxygenase. Journal of Agricultural and Food Chemistry 71(49):19457−64

doi: 10.1021/acs.jafc.3c06479
[10]

Ban X, Wu J, Kaustubh B, Lahiri P, Dhoble AS, et al. 2020. Additional salt bridges improve the thermostability of 1,4-α-glucan branching enzyme. Food Chemistry 316:126348

doi: 10.1016/j.foodchem.2020.126348
[11]

Zhou X, Xu Z, Li Y, He J, Zhu H. 2022. Improvement of the Stability and Activity of an LPMO Through Rational Disulfide Bonds Design. Frontiers in Bioengineering and Biotechnology 9:815990

doi: 10.3389/fbioe.2021.815990
[12]

Dotsenko AS, Dotsenko GS, Rozhkova AM, Zorov IN, Sinitsyn AP. 2020. Rational design and structure insights for thermostability improvement of Penicillium verruculosum Cel7A cellobiohydrolase. Biochimie 176:103−9

doi: 10.1016/j.biochi.2020.06.007
[13]

Lu Z, Zhong Q, Li J, Zhou B, Xing Y, et al. 2022. Glycine Substitution of Residues with Unfavored Dihedral Angles Improves Protein Thermostability. Catalysts 12(8):898

doi: 10.3390/catal12080898
[14]

Pu M, Xu Z, Peng Y, Hou Y, Liu D, et al. 2018. Protein crystal quality oriented disulfide bond engineering. Protein & Cell 9(7):659−63

doi: 10.1007/s13238-017-0482-7
[15]

Wu H, Chen Q, Zhang W, Mu W. 2023. Overview of strategies for developing high thermostability industrial enzymes: Discovery, mechanism, modification and challenges. Critical Reviews in Food Science and Nutrition 63(14):2057−73

doi: 10.1080/10408398.2021.1970508
[16]

Zhang Z, Yang J, Xie P, Gao Y, Bai J, et al. 2020. Characterization of a thermostable phytase from Bacillus licheniformis WHU and further stabilization of the enzyme through disulfide bond engineering. Enzyme and Microbial Technology 142:109679

doi: 10.1016/j.enzmictec.2020.109679
[17]

Yang P, Wang X, Ye J, Rao S, Zhou J, et al. 2023. Enhanced thermostability and catalytic activity of Streptomyces mobaraenesis transglutaminase by rationally engineering its flexible regions. Journal of Agricultural and Food Chemistry 71(16):6366−75

doi: 10.1021/acs.jafc.3c00260
[18]

Li L, Wu W, Deng Z, Zhang S, Guan W. 2022. Improved thermostability of lipase Lip2 from Yarrowia lipolytica through disulfide bond design for preparation of medium-long-medium structured lipids. LWT 166:113786

doi: 10.1016/j.lwt.2022.113786
[19]

Ni ZF, Li N, Xu P, Guo ZW, Zong MH, et al. 2022. Enhancement of thermostability and catalytic properties of ammonia lyase through disulfide bond construction and backbone cyclization. International Journal of Biological Macromolecules 219:804−11

doi: 10.1016/j.ijbiomac.2022.07.213
[20]

Niu C, Zhu L, Xu X, Li Q. 2016. Rational design of disulfide bonds increases thermostability of a mesophilic 1,3-1,4-β-glucanase from Bacillus terquilensis. PLoS ONE 11(4):0154036

doi: 10.1371/journal.pone.0154036
[21]

Ming Y, Zhang H, Zhao Z, Zhang Z, Wang H, et al. 2023. Enhancing the thermostability of carboxypeptidase A by a multiple computer-aided rational design based on amino acids preferences at β-turns. International Journal of Biological Macromolecules 245:125447

doi: 10.1016/j.ijbiomac.2023.125447
[22]

Bi J, Chen S, Zhao X, Nie Y, Xu Y. 2020. Computation-aided engineering of starch-debranching pullulanase from Bacillus thermoleovorans for enhanced thermostability. Applied Microbiology and Biotechnology 104(17):7551−62

doi: 10.1007/s00253-020-10764-z
[23]

Peng M, Zhang Z, Xu X, Zhang H, Zhao Z, et al. 2023. Purification and characterization of the enzymes from Brevundimonas naejangsanensis that degrade ochratoxin A and B. Food Chemistry 419:135926

doi: 10.1016/j.foodchem.2023.135926
[24]

Sun Z, Liu Q, Qu G, Feng Y, Reetz M. 2019. Utility of B-Factors in Protein Science: Interpreting Rigidity, Flexibility, and Internal Motion and Engineering Thermostability. Chemical Reviews 119(3):1626−65

doi: 10.1021/acs.chemrev.8b00290
[25]

Cao J, Fan F, Lyu C, Hu S, Zhao W, et al. 2023. Pocket modification of ω-amine transaminase AtATA for overcoming the trade-off between activity and stability toward 1-acetonaphthone. Engineering 30:203−14

doi: 10.1016/j.eng.2023.04.009
[26]

Ribeiro AJM, Tyzack JD, Borkakoti N, Holliday GL, Thornton JM. 2020. A global analysis of function and conservation of catalytic residues in enzymes. The Journal of Biological Chemistry 295(2):314−24

doi: 10.1074/jbc.REV119.006289
[27]

Zheng Y, Du Z, Li H, Zheng M, Hong T, et al. 2023. Enhancing thermostability of alkaline κ-carrageenase from Pseudoalteromonas tetraodonis by rational design of disulfide bonds. Process Bioche mistry 134:304−15

doi: 10.1016/j.procbio.2023.10.016
[28]

Yang J, Zhang X, Sun Q, Li R, Wang X, et al. 2023. Modulation of the catalytic activity and thermostability of a thermostable GH7 endoglucanase by engineering the key loop B3. International Journal of Biological Macromolecules 248:125945

doi: 10.1016/j.ijbiomac.2023.125945
[29]

Li C, Ban X, Zhang Y, Gu Z, Hong Y, et al. 2020. Rational Design of Disulfide Bonds for Enhancing the Thermostability of the 1,4-α-Glucan Branching Enzyme from Geobacillus thermoglucosidans STB02. Journal of Agricultural and Food Chemistry 68(47):13791−97

doi: 10.1021/acs.jafc.0c04798
[30]

Yang M, Yang S, Deng Z, Zhang Y, Yuan Z, et al. 2023. Improving the thermostability of glycosyltransferase UGT76G1 by computer-aided target analysis for highly efficient biosynthesis of rebaudioside M. Food Bioscience 56:103119

doi: 10.1016/j.fbio.2023.103119
[31]

Arabnejad H, Dal Lago M, Jekel PA, Floor RJ, Thunnissen AMWH, et al. 2016. A robust cosolvent-compatible halohydrin dehalogenase by computational library design. Protein Engineering Design and Selection 30(3):175−89

doi: 10.1093/protein/gzw068