[1]

Shah K, Chen J, Chen J, Qin Y. 2023. Pitaya nutrition, biology, and biotechnology: a review. International Journal of Molecular Sciences 24(18):13986

doi: 10.3390/ijms241813986
[2]

Chien YC, Chang JC. 2019. Net houses effects on microclimate, production, and plant protection of white-fleshed pitaya. HortScience 54(4):692−700

doi: 10.21273/HORTSCI13850-18
[3]

Santos GBM, Dionísio AP, Magalhães HCR, Abreu FAP, Lira SM, et al. 2020. Effects of processing on the chemical, physicochemical, enzymatic, and volatile metabolic composition of pitaya (Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose). Food Research International 127:108710

doi: 10.1016/j.foodres.2019.108710
[4]

Qin Y, Liu Y, Zhang X, Liu J. 2020. Development of active and intelligent packaging by incorporating betalains from red pitaya (Hylocereus polyrhizus) peel into starch/polyvinyl alcohol films. Food Hydrocolloids 100:105410

doi: 10.1016/j.foodhyd.2019.105410
[5]

Roriz CL, Heleno SA, Alves MJ, Oliveira MBPP, Pinela J, et al. 2022. Red pitaya (Hylocereus costaricensis) peel as a source of valuable molecules: Extraction optimization to recover natural colouring agents. Food Chemistry 372:131344

doi: 10.1016/j.foodchem.2021.131344
[6]

Saenjum C, Pattananandecha T, Nakagawa K. 2021. Antioxidative and anti-inflammatory phytochemicals and related stable paramagnetic species in different parts of dragon fruit. Molecules 26(12):3565

doi: 10.3390/molecules26123565
[7]

Chen R, Luo S, Wang C, Bai H, Lu J, et al. 2021. Effects of ultra-high pressure enzyme extraction on characteristics and functional properties of red pitaya (Hylocereus polyrhizus) peel pectic polysaccharides. Food Hydrocolloids 121:107016

doi: 10.1016/j.foodhyd.2021.107016
[8]

Xu X, Jiang Y, Yeo QX, Zhou W. 2024. Purification and characterization of betacyanin monomers from Hylocereus polyrhizus peel: A comparative study of their antioxidant and antidiabetic activities with mechanistic insights. Food Chemistry 451:139467

doi: 10.1016/j.foodchem.2024.139467
[9]

Chew YM, Hung CH, King VAE. 2019. Accelerated storage test of betalains extracted from the peel of pitaya (Hylocereus cacti) fruit. Journal of Food Science and Technology 56:1595−600

doi: 10.1007/s13197-019-03673-1
[10]

Jiang H, Zhang W, Li X, Shu C, Jiang W, et al. 2021. Nutrition, phytochemical profile, bioactivities and applications in food industry of pitaya (Hylocereus spp.) peels: A comprehensive review. Trends in Food Science and Technology 116:199−217

doi: 10.1016/j.jpgs.2021.06.040
[11]

Sadowska-Bartosz I, Bartosz G. 2021. Biological properties and applications of betalains. Molecules 26:2520

doi: 10.3390/molecules26092520
[12]

Tanabtabzadeh MS, Javanbakht V, Golshirazi AH. 2019. Extraction of betacyanin and betaxanthin pigments from red beetroots by chitosan extracted from shrimp wastes. Waste and Biomass Valorization 10:641−53

doi: 10.1007/s12649-017-0086-8
[13]

Das M, Saeid A, Hossain MF, Jiang GH, Eun JB, et al. 2019. Influence of extraction parameters and stability of betacyanins extracted from red amaranth during storage. Journal of Food Science and Technology 56:643−53

doi: 10.1007/s13197-018-3519-x
[14]

Khoo HE, He X, Tang Y, Li Z, Li C, et al. 2022. Betacyanins and anthocyanins in pulp and peel of red pitaya (Hylocereus polyrhizus cv. Jindu), inhibition of oxidative stress, lipid reducing, and cytotoxic effects. Frontiers in Nutrition 9:1−11

doi: 10.3389/fnut.2022.894438
[15]

de Mello FR, Bernardo C, Dias CO, Gonzaga L, Amante ER, et al. 2015. Antioxidant properties, quantification and stability of betalains from pitaya (Hylocereus undatus) peel. Ciencia Rural 45:323−28

doi: 10.1590/0103-8478cr20140548
[16]

Thaiudom S, Oonsivilai R, Thaiwong N. 2021. Production of colorant powder from dragon fruit (Hylocerecus polyrhizus) peel: Bioactivity, heavy metal contamination, antimutagenicity, and antioxidation aspects. Journal of Food Processing and Preservation 45:e15044

doi: 10.1111/jfpp.15044
[17]

Zdunek A, Pieczywek PM, Cybulska J. 2021. The primary, secondary, and structures of higher levels of pectin polysaccharides. Comprehensive Reviews in Food Science and Food Safety 20:1101−17

doi: 10.1111/1541-4337.12689
[18]

Li Q, Li J, Li H, Xu R, Yuan Y, et al. 2019. Physicochemical properties and functional bioactivities of different bonding state polysaccharides extracted from tomato fruit. Carbohydrate Polymers 219:181−90

doi: 10.1016/j.carbpol.2019.05.020
[19]

Niu H, Dou Z, Hou K, Wang W, Chen X, et al. 2023. A critical review of RG-I pectin: sources, extraction methods, structure, and applications. Critical Reviews in Food Science and Nutrition 00:1−21

doi: 10.1080/10408398.2023.2204509
[20]

Shivamathi CS, Moorthy IG, Kumar RV, Soosai MR, Maran JP, et al. 2019. Optimization of ultrasound assisted extraction of pectin from custard apple peel: Potential and new source. Carbohydrate Polymers 225:115240

doi: 10.1016/j.carbpol.2019.115240
[21]

Wang W, Ma X, Jiang P, Hu L, Zhi Z, et al. 2016. Characterization of pectin from grapefruit peel: A comparison of ultrasound-assisted and conventional heating extractions. Food Hydrocolloids 61:730−39

doi: 10.1016/j.foodhyd.2016.06.019
[22]

Tongkham N, Juntasalay B, Lasunon P, Sengkhamparn N. 2017. Dragon fruit peel pectin: Microwave-assisted extraction and fuzzy assessment. Agriculture and Natural Resources 51:262−67

doi: 10.1016/j.anres.2017.04.004
[23]

Salazar Ripoll CS, Hincapié-Llanos GA. 2023. Evaluation of sources and methods of pectin extraction from fruit and vegetable wastes: A Systematic Literature Review (SLR). Food Bioscience 51:102278

doi: 10.1016/j.fbio.2022.102278
[24]

Roman-Benn A, Contador CA, Li MW, Lam HM, Ah-Hen K, et al. 2023. Pectin: An overview of sources, extraction and applications in food products, biomedical, pharmaceutical and environmental issues. Food Chemistry Advances 2:100192

doi: 10.1016/j.focha.2023.100192
[25]

Du H, Olawuyi IF, Said NS, Lee WY. 2024. Comparative analysis of physicochemical and functional properties of pectin from extracted dragon fruit waste by different techniques. Polymers 16:1097

doi: 10.3390/polym16081097
[26]

Khubber S, Chaturvedi K, Thakur N, Sharma N, Yadav SK. 2021. Low-methoxyl pectin stabilizes low-fat set yoghurt and improves their physicochemical properties, rheology, microstructure and sensory liking. Food Hydrocolloids 111:106240

doi: 10.1016/j.foodhyd.2020.106240
[27]

Abitbol T, Mijlkovic A, Malafronte L, Stevanic JS, Larsson PT, et al. 2021. Cellulose nanocrystal/low methoxyl pectin gels produced by internal ionotropic gelation. Carbohydrate Polymers 260:117345

doi: 10.1016/j.carbpol.2020.117345
[28]

Li M, Jin Y, Wang Y, Meng L, Zhang N, et al. 2019. Preparation of Bifidobacterium breve encapsulated in low methoxyl pectin beads and its effects on yogurt quality. Journal of Dairy Science 102:4832−43

doi: 10.3168/jds.2018-15597
[29]

Celus M, Salvia-Trujillo L, Kyomugasho C, Maes I, Van Loey AM, et al. 2018. Structurally modified pectin for targeted lipid antioxidant capacity in linseed/sunflower oil-in-water emulsions. Food Chemistry 241:86−96

doi: 10.1016/j.foodchem.2017.08.056
[30]

Zhou X, Feng X, Qi W, Zhang J, Chen L. 2024. Microencapsulation of vitamin E by gelatin-high/low methoxy pectin complex coacervates: Effect of pH, pectin type, and protein/polysaccharide ratio. Food Hydrocolloids 151:109794

doi: 10.1016/j.foodhyd.2024.109794
[31]

Thirugnanasambandham K, Sivakumar V, Prakash Maran J. 2014. Process optimization and analysis of microwave assisted extraction of pectin from dragon fruit peel. Carbohydrate Polymers 112:622−26

doi: 10.1016/j.carbpol.2014.06.044
[32]

Dische Z. 1947. A new specific color reaction of hexuronic acids. The Journal of Biological Chemistry 167:189−98

doi: 10.1016/s0021-9258(17)35155-4
[33]

Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248−54

doi: 10.1016/0003-2697(76)90527-3
[34]

Jafari F, Khodaiyan F, Kiani H, Hosseini SS. 2017. Pectin from carrot pomace: Optimization of extraction and physicochemical properties. Carbohydrate Polymers 157:1315−22

doi: 10.1016/j.carbpol.2016.11.013
[35]

Wang L, Zhang B, Xiao J, Huang Q, Li C, et al. 2018. Physicochemical, functional, and biological properties of water-soluble polysaccharides from Rosa roxburghii Tratt fruit. Food Chemistry 249:127−35

doi: 10.1016/j.foodchem.2018.01.011
[36]

Wang BH, Cao JJ, Zhang B, Chen HQ. 2019. Structural characterization, physicochemical properties and α-glucosidase inhibitory activity of polysaccharide from the fruits of wax apple. Carbohydrate Polymers 211:227−36

doi: 10.1016/j.carbpol.2019.02.006
[37]

Santos P, Aguiar AC, Barbero GF, Rezende CA, Martínez J. 2015. Supercritical carbon dioxide extraction of capsaicinoids from malagueta pepper (Capsicum frutescens L.) assisted by ultrasound. Ultrasonics Sonochemistry 22:78−88

doi: 10.1016/j.ultsonch.2014.05.001
[38]

Thu Dao TA, Webb HK, Malherbe F. 2021. Optimization of pectin extraction from fruit peels by response surface method: Conventional versus microwave-assisted heating. Food Hydrocolloids 113:106475

doi: 10.1016/j.foodhyd.2020.106475
[39]

Nguyen BMN, Pirak T. 2019. Physicochemical properties and antioxidant activities of white dragon fruit peel pectin extracted with conventional and ultrasound-assisted extraction. Cogent Food and Agriculture 5:1633076

doi: 10.1080/23311932.2019.1633076
[40]

Zaid RM, Mishra P, Tabassum S, Wahid ZA, Sakinah AMM. 2019. High methoxyl pectin extracts from Hylocereus polyrhizus's peels: Extraction kinetics and thermodynamic studies. International Journal of Biological Macromolecules 141:1147−57

doi: 10.1016/j.ijbiomac.2019.09.017
[41]

Luo F, Zhang Z, Lu F, Li D, Zhou C, et al. 2024. Ultrasound modification of pectin and the mechanism of its interaction with cyanidin-3-O-glucoside. Food Hydrocolloids 152:109898

doi: 10.1016/j.foodhyd.2024.109898
[42]

Chen H, Liu Y, Zhang J, Jiang Y, Li D. 2022. Pectin extracted from dragon fruit Peel: An exploration as a natural emulsifier. International Journal of Biological Macromolecules 221:976−85

doi: 10.1016/j.ijbiomac.2022.09.069
[43]

Said NS, Olawuyi IF, Lee WY. 2023. Pectin hydrogels: gel-forming behaviors, mechanisms, and food applications. Gels 9:732

doi: 10.3390/gels9090732
[44]

Zhang MY, Cai J. 2023. Preparation of branched RG-I-rich pectin from red dragon fruit peel and the characterization of its probiotic properties. Carbohydrate Polymers 299:120144

doi: 10.1016/j.carbpol.2022.120144
[45]

Deng RX, Zheng YY, Liu DJ, Liu JY, Zhang MN, et al. 2024. Ultrasonics sonochemistry the effect of ultrasonic power on the physicochemical properties and antioxidant activities of frosted figs pectin. Ultrasonics Sonochemistry 106:106883

doi: 10.1016/j.ultsonch.2024.106883
[46]

Cárdenas-Pérez S, Chanona-Pérez JJ, Güemes-Vera N, Cybulska J, Szymanska-Chargot M, et al. 2018. Structural, mechanical and enzymatic study of pectin and cellulose during mango ripening. Carbohydrate Polymers 196:313−21

doi: 10.1016/j.carbpol.2018.05.044
[47]

Liu D, Lopez-Sanchez P, Martinez-Sanz M, et al. 2019. Adsorption isotherm studies on the interaction between polyphenols and apple cell walls: Effects of variety, heating and drying. Food Chemistry 282:58−66

doi: 10.1016/j.foodchem.2018.12.098
[48]

Qiu WY, Cai WD, Wang M, Yan JK. 2019. Effect of ultrasonic intensity on the conformational changes in citrus pectin under ultrasonic processing. Food Chemistry 297:125021

doi: 10.1016/j.foodchem.2019.125021