[1]

Li W, Wang Y, Wei H, Zhang Y, Guo Z, et al. 2020. Structural characterization of Lanzhou lily (Lilium davidii var. unicolor) polysaccharides and determination of their associated antioxidant activity. Journal of the Science of Food and Agriculture 100:5603−16

doi: 10.1002/jsfa.10613
[2]

Tang Y, Liu Y, Luo K, Xu L, Yang P, et al. 2022. Potential applications of Lilium plants in cosmetics: a comprehensive review based on research papers and patents. Antioxidants 11(8):1458

doi: 10.3390/antiox11081458
[3]

Polat A, Izli N. 2022. Drying characteristics and quality evaluation of 'Ankara' pear dried by electrohydrodynamic-hot air (EHD) method. Food Control 134:108774

doi: 10.1016/j.foodcont.2021.108774
[4]

Zhang X, Xue L, Wu Z, Zhang W, Zhang H, et al. 2023. Insight into the effects of drying methods on Lanzhou lily rehydration. Foods 12(9):1817

doi: 10.3390/foods12091817
[5]

Quan H, Cai Y, Lu Y, Shi C, Han X, et al. 2023. Effect of microwave treatments combined with hot-air drying on phytochemical profiles and antioxidant activities in lily bulbs (Lilium lancifolium). Foods 12(12):2344

doi: 10.3390/foods12122344
[6]

Zhang B, Quan H, Cai Y, Han X, Kang H, et al. 2023. Comparative study of browning, phenolic profiles, antioxidant and antiproliferative activities in hot air and vacuum drying of lily (Lilium lancifolium Thunb.) bulbs. LWT 184:115015

doi: 10.1016/j.lwt.2023.115015
[7]

Wang K, Liao X, Xia J, Xiao C, Deng J, et al. 2023. Metabolomics: A promising technique for uncovering quality-attribute of fresh and processed fruits and vegetables. Trends in Food Science & Technology 142:104213

doi: 10.1016/j.jpgs.2023.104213
[8]

Lou W, Mu X, Liu J, Xun M, Hu Y. 2023. Study on the differences of metabolites and their bioactivities of Lithocarpus under different processing methods. Food Bioscience 54:102817

doi: 10.1016/j.fbio.2023.102817
[9]

Wang K, Xu Z. 2022. Comparison of freshly squeezed, non-thermally and thermally processed orange juice based on traditional quality characters, untargeted metabolomics, and volatile overview. Food Chemistry 373:131430

doi: 10.1016/j.foodchem.2021.131430
[10]

Kong Y, Wang H, Lang L, Dou X, Bai J. 2021. Metabolome-based discrimination analysis of five Lilium bulbs associated with differences in secondary metabolites. Molecules 26(5):1340

doi: 10.3390/molecules26051340
[11]

Tang YC, Liu YJ, He GR, Cao YW, Bi MM, et al. 2021. Comprehensive analysis of secondary metabolites in the extracts from different lily bulbs and their antioxidant ability. Antioxidants 10(10):1634

doi: 10.3390/antiox10101634
[12]

Chiang N, Ho CT, Munafo JP Jr. 2018. Identification of key aroma compounds in raw and roasted lily bulbs (Bai He). Flavour and Fragrance Journal 33:294−302

doi: 10.1002/ffj.3446
[13]

Mi L, Wang K, Gan Z, Lin Y, Wang X, et al. 2024. A comparative metabolomics study on two fresh edible lilies for vegetable: Lilium brownii var. viridulum and Lilium davidii var. unicolor. Food Bioscience 57:103583

doi: 10.1016/j.fbio.2024.103583
[14]

Yang S, Mi L, Wang K, Wang X, Wu J, et al. 2023. Comparative metabolomics analysis in the clean label ingredient of NFC spine grape juice processed by mild heating vs high pressure processing. Food Innovation and Advances 2:95−105

doi: 10.48130/FIA-2023-0011
[15]

Pang Z, Zhou G, Ewald J, Chang L, Hacariz O, et al. 2022. Using MetaboAnalyst 5.0 for LC-HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nature Protocols 17:1735−61

doi: 10.1038/s41596-022-00710-w
[16]

Baygildieva DI, Braun AV, Stavrianidi AN, Rodin IA. 2020. Determination of Eleutheroside B and Eleutheroside E in Extracts from Eleutherococcus senticosus by liquid chromatography/mass spectrometry. Journal of Analytical Chemistry 75:1832−37

doi: 10.1134/S1061934820140051
[17]

Tian Y, Zhao Y, Huang J, Zeng H, Zheng B. 2016. Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms. Food Chemistry 197:714−22

doi: 10.1016/j.foodchem.2015.11.029
[18]

Gerrard JA. 2006. The Maillard reaction in food: Progress made, challenges ahead-conference report from the Eighth International Symposium on the Maillard reaction. Trends in Food Science & Technology 17:324−30

doi: 10.1016/j.jpgs.2005.11.011
[19]

Liu L, Wang Y, Fan D, Mi Y. 2015. Using phenolphthalein as a promising indicator to monitor the vacuum freeze-drying process. Materials Letters 139:245−48

doi: 10.1016/j.matlet.2014.10.047
[20]

Mitra J, Shrivastava SL, Rao PS. 2015. Non-enzymatic browning and flavour kinetics of vacuum dried onion slices. International Agrophysics 29:91−100

doi: 10.1515/intag-2015-0010
[21]

Wang X, Yang L, Liu J, Wang R, Zhang Q, et al. 2020. Comparison of the biochemical properties and thermal inactivation of polyphenol oxidase from three lily bulb cultivars. Journal of Food Biochemistry 44:e13431

doi: 10.1111/jfbc.13431
[22]

Mastali M, Kinnunen P, Dalvand A, Firouz RM, Illikainen M. 2018. Drying shrinkage in alkali-activated binders - A critical review. Construction and Building Materials 190:533−50

doi: 10.1016/j.conbuildmat.2018.09.125
[23]

Mahiuddin M, Khan MIH, Kumar C, Rahman MM, Karim MA. 2018. Shrinkage of Food Materials During Drying: Current Status and Challenges. Comprehensive Reviews in Food Science and Food Safety 17(5):1113−26

doi: 10.1111/1541-4337.12375
[24]

Mustafa I, Chin NL, Fakurazi S, Palanisamy A. 2019. Comparison of phytochemicals, antioxidant and anti-inflammatory properties of sun-, oven- and freeze-dried ginger extracts. Foods 8(10):456

doi: 10.3390/foods8100456
[25]

An NN, Sun WH, Li BZ, Wang Y, Shang N, et al. 2022. Effect of different drying techniques on drying kinetics, nutritional components, antioxidant capacity, physical properties and microstructure of edamame. Food Chemistry 373:131412

doi: 10.1016/j.foodchem.2021.131412
[26]

Zhang M, Tang J, Mujumdar AS, Wang S. 2006. Trends in microwave-related drying of fruits and vegetables. Trends in Food Science & Technology 17(10):524−34

doi: 10.1016/j.jpgs.2006.04.011
[27]

Bikaki M, Shah R, Müller A, Kuhnert N. 2021. Heat induced hydrolytic cleavage of the peptide bond in dietary peptides and proteins in food processing. Food Chemistry 357:129621

doi: 10.1016/j.foodchem.2021.129621
[28]

Wegener S, Kaufmann M, Kroh LW. 2017. Influence of L-pyroglutamic acid on the color formation process of non-enzymatic browning reactions. Food Chemistry 232:450−54

doi: 10.1016/j.foodchem.2017.04.046
[29]

Kirimura J, Shimizu A, Kimizuka A, Ninomiya T, Katsuya N. 1969. Contribution of peptides and amino acids to the taste of foods. Journal of Agricultural and Food Chemistry 17(4):689−95

doi: 10.1021/jf60164a031
[30]

Bachmanov AA, Beauchamp GK. 2008. Amino acid and carbohydrate preferences in C57BL/6ByJ and 129P3/J mice. Physiology & Behavior 93(1-2):37−43

doi: 10.1016/j.physbeh.2007.07.016
[31]

Alim A, Yang C, Song H, Liu Y, Zou T, et al. 2019. The behavior of umami components in thermally treated yeast extract. Food Research International 120:534−43

doi: 10.1016/j.foodres.2018.11.002
[32]

Liu JB, Liu MY, He CC, Song HL, Chen F. 2015. Effect of thermal treatment on the flavor generation from Maillard reaction of xylose and chicken peptide. LWT - Food Science and Technology 64(1):316−25

doi: 10.1016/j.lwt.2015.05.061
[33]

Delgado T, Pereira JA, Ramalhosa E, Casal S. 2017. Comparison of different drying methods on the chemical and sensory properties of chestnut (Castanea sativa M.) slices. European Food Research and Technology 243:1957−71

doi: 10.1007/s00217-017-2902-6
[34]

Tenyang N, Ponka R, Tiencheu B, Djikeng FT, Womeni HM. 2020. Effect of traditional drying methods on proximate composition, fatty acid profile, and oil oxidation of fish species consumed in the far-north of Cameroon. Global Challenges 4(8):2000007

doi: 10.1002/gch2.202000007
[35]

Saidi B, Warthesen JJ. 1995. Effect of heat and homogenization on riboflavin photolysis in milk. International Dairy Journal 5(7):635−45

doi: 10.1016/0958-6946(95)00048-8
[36]

Okmen ZA, Bayindirli AL. 1999. Effect of microwave processing on water soluble vitamins: kinetic parameters. International Journal of Food Properties 2(3):255−64

doi: 10.1080/10942919909524609
[37]

Wang CC, Hsieh PW, Kuo JR, Wang SJ. 2021. Rosmarinic acid, a bioactive phenolic compound, inhibits glutamate release from rat cerebrocortical synaptosomes through GABAA receptor activation. Biomolecules 11(7):1029

doi: 10.3390/biom11071029
[38]

Simonetti P, Gardana C, Pietta P. 2001. Plasma levels of caffeic acid and antioxidant status after red wine intake. Journal of Agricultural and Food Chemistry 49(12):5964−68

doi: 10.1021/jf010546k
[39]

Petersen M. 1997. Cytochrome P450-dependent hydroxylation in the biosynthesis of rosmarinic acid in Coleus. Phytochemistry 45(6):1165−72

doi: 10.1016/S0031-9422(97)00135-0
[40]

Fletcher RS, Slimmon T, McAuley CY, Kott LS. 2005. Heat stress reduces the accumulation of rosmarinic acid and the total antioxidant capacity in spearmint (Mentha spicata L). Journal of the Science of Food and Agriculture 85(14):2429−36

doi: 10.1002/jsfa.2270
[41]

Ghafoor K, Al Juhaimi F, Özcan MM, Uslu N, Babiker EE, et al. 2020. Total phenolics, total carotenoids, individual phenolics and antioxidant activity of ginger (Zingiber officinale) rhizome as affected by drying methods. LWT 126:109354

doi: 10.1016/j.lwt.2020.109354
[42]

Wang C, Li J, Zhang Y, He Z, Zhang Y, et al. 2022. Effects of electrostatic spray drying on the sensory qualities, aroma profile and microstructural features of instant Pu-erh tea. Food Chemistry 373:131546

doi: 10.1016/j.foodchem.2021.131546
[43]

Liu J, Jiao Z, Zhang C, Yang W, Liu H, et al. 2018. Effects of different drying methods on phenolic contents, antioxidant, and tyrosinase inhibitory activity of peach blossoms. Journal of Food Measurement and Characterization 12:2339−48

doi: 10.1007/s11694-018-9850-0
[44]

Yang X, Liu T, Qi S, Gu H, Li J, et al. 2022. Tea saponin additive to extract eleutheroside B and E from Eleutherococcus senticosus by ultrasonic mediation and its application in a semi-pilot scale. Ultrasonics Sonochemistry 86:106039

doi: 10.1016/j.ultsonch.2022.106039
[45]

Wang R, Chen C, Guo S. 2017. Effects of drying methods on starch crystallinity of gelatinized foxtail millet (α-millet) and its eating quality. Journal of Food Engineering 207:81−89

doi: 10.1016/j.jfoodeng.2017.03.018
[46]

Chan CH, Yusoff R, Ngoh GC, Kung FWL. 2011. Microwave-assisted extractions of active ingredients from plants. Journal of Chromatography A 1218(37):6213−25

doi: 10.1016/j.chroma.2011.07.040
[47]

Wang Z, Pan H, Xu J, Chang Y, Liu C, et al. 2022. A sustainable and integrated natural surfactant mediated microwave-assisted extraction technique enhances the extraction of phytochemicals from plants. Industrial Crops and Products 184:115043

doi: 10.1016/j.indcrop.2022.115043
[48]

Gray N, Lawler NG, Yang R, Morillon AC, Gay MCL, et al. 2021. A simultaneous exploratory and quantitative amino acid and biogenic amine metabolic profiling platform for rapid disease phenotyping via UPLC-QToF-MS. Talanta 223(Part 2):121872

doi: 10.1016/j.talanta.2020.121872
[49]

Das PR, Islam MT, Lee SH, Lee MK, Kim JB, et al. 2020. UPLC-DAD-QToF/MS analysis of green tea phenolic metabolites in their free, esterified, glycosylated, and cell wall-bound forms by ultra-sonication, agitation, and conventional extraction techniques. LWT 127:109440

doi: 10.1016/j.lwt.2020.109440
[50]

Bączek K, Węglarz Z, Przybyl JL. 2011. Accumulation of biologically active compounds in the rhizomes and roots of eleuthero (Eleutherococcus senticosus/Maxim. et Rupr./Maxim.). Advances in Environmental Biology 5(2):325−28