[1]

Zhang W, Lin J, Li J, Zheng S, Zhang X, et al. 2021. Rambutan genome revealed gene networks for spine formation and aril development. The Plant Journal 108:1037−52

doi: 10.1111/tpj.15491
[2]

Par̆enicová L, de Folter S, Kieffer M, Horner DS, Favalli C, et al. 2003. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. The Plant Cell 15:1538−51

doi: 10.1105/tpc.011544
[3]

Hu J, Chang X, Zhang Y, Yu X, Qin Y, et al. 2021. The pineapple MADS-box gene family and the evolution of early monocot flower. Scientific Reports 11:849

doi: 10.1038/s41598-020-79163-8
[4]

Zhang X, Fatima M, Zhou P, Ma Q, Ming R. 2020. Analysis of MADS-box genes revealed modified flowering gene network and diurnal expression in pineapple. BMC Genomics 21:8

doi: 10.1186/s12864-019-6421-7
[5]

Arora R, Agarwal P, Ray S, Singh AK, Singh VP, et al. 2007. MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics 8:242

doi: 10.1186/1471-2164-8-242
[6]

Zhao D, Chen Z, Xu L, Zhang L, Zou Q. 2021. Genome-wide analysis of the MADS-box gene family in maize: gene structure, evolution, and relationships. Genes 12:1956

doi: 10.3390/genes12121956
[7]

Wang B, Hu W, Fang Y, Feng X, Fang J, et al. 2021. Comparative analysis of the MADS-box genes revealed their potential functions for flower and fruit development in longan (Dimocarpus longan). Frontiers in Plant Science 12:813798

doi: 10.3389/fpls.2021.813798
[8]

Yang J, Chen R, Liu W, Xiang X, Fan C. 2024. Genome-wide characterization and phylogenetic and stress response expression analysis of the MADS-box gene family in litchi (Litchi chinensis Sonn.). International Journal of Molecular Sciences 25:1754

doi: 10.3390/ijms25031754
[9]

Passmore S, Elble R, Tye BK. 1989. A protein involved in minichromosome maintenance in yeast binds a transcriptional enhancer conserved in eukaryotes. Genes & Development 3:921−35

doi: 10.1101/gad.3.7.921
[10]

Pollock R, Treisman R. 1991. Human SRF-related proteins: DNA-binding properties and potential regulatory targets. Genes & Deve lopment 5:2327−41

doi: 10.1101/gad.5.12a.2327
[11]

Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, et al. 1990. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346:35−39

doi: 10.1038/346035a0
[12]

Sommer H, Beltrán JP, Huijser P, Pape H, Lönnig WE, et al. 1990. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. The EMBO Journal 9:605−13

doi: 10.1002/j.1460-2075.1990.tb08152.x
[13]

Becker A, Theißen G. 2003. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Molecular Phylogenetics and Evolution 29:464−89

doi: 10.1016/S1055-7903(03)00207-0
[14]

Theißen G, Saedler H. 2001. Floral quartets. Nature 409:469−71

doi: 10.1038/35054172
[15]

Tadiello A, Pavanello A, Zanin D, Caporali E, Colombo L, et al. 2009. A PLENA-like gene of peach is involved in carpel formation and subsequent transformation into a fleshy fruit. Journal of Experimental Botany 60:651−61

doi: 10.1093/jxb/ern313
[16]

Lovisetto A, Guzzo F, Tadiello A, Toffali K, Favretto A, et al. 2012. Molecular analyses of MADS-box genes trace back to gymnosperms the invention of fleshy fruits. Molecular Biology and Evolution 29:409−19

doi: 10.1093/molbev/msr244
[17]

Pi M, Hu S, Cheng L, Zhong R, Cai Z, et al. 2021. The MADS-box gene FveSEP3 plays essential roles in flower organogenesis and fruit development in woodland strawberry. Horticulture Research 8:247

doi: 10.1038/s41438-021-00673-1
[18]

Tandre K, Svenson M, Svensson ME, Engström P. 1998. Conservation of gene structure and activity in the regulation of reproductive organ development of conifers and angiosperms. The Plant Journal 15:615−23

doi: 10.1046/j.1365-313x.1998.00236.x
[19]

Zu K, Li J, Dong S, Zhao Y, Xu S, et al. 2017. Morphogenesis and global analysis of transcriptional profiles of Celastrus orbiculatus aril: unravelling potential genes related to aril development. Genes & Genomics 39:623−35

doi: 10.1007/s13258-017-0528-5
[20]

Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, et al. 2021. Pfam: The protein families database in 2021. Nucleic Acids Research 49:D412−D419

doi: 10.1093/nar/gkaa913
[21]

Wang J, Chitsaz F, Derbyshire MK, Gonzales NR, Gwadz M, et al. 2023. The conserved domain database in 2023. Nucleic Acids Research 51:D384−D388

doi: 10.1093/nar/gkac1096
[22]

Letunic I, Khedkar S, Bork P. 2021. SMART: recent updates, new developments and status in 2020. Nucleic Acids Research 49:D458−D460

doi: 10.1093/nar/gkaa937
[23]

Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, et al. 1999. Protein identification and analysis tools in the ExPASy server. Methods in Molecular Biology 112:531−52

doi: 10.1385/1-59259-584-7:531
[24]

Horton P, Park KJ, Obayashi T, Fujita N, Harada H, et al. 2007. WoLF PSORT: protein localization predictor. Nucleic Acids Research 35:W585−W587

doi: 10.1093/nar/gkm259
[25]

Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14:587−89

doi: 10.1038/nmeth.4285
[26]

Letunic I, Bork P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research 49:W293−W296

doi: 10.1093/nar/gkab301
[27]

Hu B, Jin J, Guo AY, Zhang H, Luo J, et al. 2015. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296−97

doi: 10.1093/bioinformatics/btu817
[28]

Bailey TL, Johnson J, Grant CE, Noble WS. 2015. The MEME Suite. Nucleic Acids Research 43:W39−W49

doi: 10.1093/nar/gkv416
[29]

Chao J, Li Z, Sun Y, Aluko OO, Wu X, et al. 2021. MG2C: a user-friendly online tool for drawing genetic maps. Molecular Horticulture 1:16

doi: 10.1186/s43897-021-00020-x
[30]

Wang Y, Tang H, Debarry JD, Tan X, Li J, et al. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research 40:e49

doi: 10.1093/nar/gkr1293
[31]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Molecular Plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[32]

Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30:325−27

doi: 10.1093/nar/30.1.325
[33]

Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. 2021. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Molecular Biology and Evolution 38:5825−29

doi: 10.1093/molbev/msab293
[34]

Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, et al. 2023. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research 51:D638−D646

doi: 10.1093/nar/gkac1000
[35]

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13:2498−504

doi: 10.1101/gr.1239303
[36]

Fatima M, Zhang X, Lin J, Zhou P, Zhou D, et al. 2020. Expression profiling of MADS-box gene family revealed its role in vegetative development and stem ripening in S. spontaneum. Scientific Reports 10:20536

doi: 10.1038/s41598-020-77375-6
[37]

Hu L, Liu S. 2012. Genome-wide analysis of the MADS-box gene family in cucumber. Genome 55:245−56

doi: 10.1139/g2012-009
[38]

Su Z, Wang J, Yu J, Huang X, Gu X. 2006. Evolution of alternative splicing after gene duplication. Genome Research 16:182−89

doi: 10.1101/gr.4197006
[39]

Chorev M, Carmel L. 2012. The function of introns. Frontiers in Genetics 3:55

doi: 10.3389/fgene.2012.00055
[40]

Jo BS, Choi SS. 2015. Introns: The Functional Benefits of Introns in Genomes. Genomics & Informatics 13:112−18

doi: 10.5808/GI.2015.13.4.112
[41]

Moore RC, Purugganan MD. 2003. The early stages of duplicate gene evolution. Proceedings of the National Academy of Sciences of the United States of America 100:15682−87

doi: 10.1073/pnas.2535513100
[42]

Wittkopp PJ, Kalay G. 2012. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nature Reviews Genetics 13:59−69

doi: 10.1038/nrg3095
[43]

Santino A, Taurino M, De Domenico S, Bonsegna S, Poltronieri P, et al. 2013. Jasmonate signaling in plant development and defense response to multiple (a)biotic stresses. Plant Cell Reports 32:1085−98

doi: 10.1007/s00299-013-1441-2
[44]

Ain-Ali QU, Mushtaq N, Amir R, Gul A, Tahir M, et al. 2021. Genome-wide promoter analysis, homology modeling and protein interaction network of Dehydration Responsive Element Binding (DREB) gene family in Solanum tuberosum. PLoS One 16:e0261215

doi: 10.1371/journal.pone.0261215
[45]

Zia K, Sadaqat M, Ding B, Fatima K, Albekairi NA, et al. 2024. Comparative genomics and bioinformatics approaches revealed the role of CC-NBS-LRR genes under multiple stresses in passion fruit. Frontiers in Genetics 15:1358134

doi: 10.3389/fgene.2024.1358134
[46]

Dai Y, Wang Y, Zeng L, Jia R, He L, et al. 2023. Genomic and transcriptomic insights into the evolution and divergence of MIKC-type MADS-box genes in Carica papaya. International Journal of Molecular Sciences 24:14039

doi: 10.3390/ijms241814039
[47]

Coen ES, Meyerowitz EM. 1991. The war of the whorls: genetic interactions controlling flower development. Nature 353:31−37

doi: 10.1038/353031a0
[48]

Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200−3

doi: 10.1038/35012103
[49]

Pelaz S, Gustafson-Brown C, Kohalmi SE, Crosby WL, Yanofsky MF. 2001. APETALA1 and SEPALLATA3 interact to promote flower development. The Plant Journal 26:385−94

doi: 10.1046/j.1365-313X.2001.2641042.x
[50]

Hugouvieux V, Silva CS, Jourdain A, Stigliani A, Charras Q, et al. 2018. Tetramerization of MADS family transcription factors SEPALLATA3 and AGAMOUS is required for floral meristem determinacy in Arabidopsis. Nucleic Acids Research 46:4966−77

doi: 10.1093/nar/gky205
[51]

Andrés F, Coupland G. 2012. The genetic basis of flowering responses to seasonal cues. Nature Reviews Genetics 13:627−39

doi: 10.1038/nrg3291
[52]

Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF. 2000. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766−70

doi: 10.1038/35008089
[53]

Pinyopich A, Ditta GS, Savidge B, Liljegren SJ, Baumann E, et al. 2003. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature 424:85−88

doi: 10.1038/nature01741
[54]

Brambilla V, Battaglia R, Colombo M, Masiero S, Bencivenga S, et al. 2007. Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis. The Plant Cell 19:2544−56

doi: 10.1105/tpc.107.051797
[55]

Dreni L, Jacchia S, Fornara F, Fornari M, Ouwerkerk PBF, et al. 2007. The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice. The Plant Journal 52:690−99

doi: 10.1111/j.1365-313X.2007.03272.x
[56]

Lovisetto A, Baldan B, Pavanello A, Casadoro G. 2015. Characterization of an AGAMOUS gene expressed throughout development of the fleshy fruit-like structure produced by Ginkgo biloba around its seeds. BMC Evolutionary Biology 15:139

doi: 10.1186/s12862-015-0418-x
[57]

Borner R, Kampmann G, Chandler J, Gleissner R, Wisman E, et al. 2000. A MADS domain gene involved in the transition to flowering in Arabidopsis. The Plant Journal 24:591−99

doi: 10.1046/j.1365-313x.2000.00906.x
[58]

Lee S, Kim J, Han JJ, Han MJ, An G. 2004. Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. The Plant Journal 38:754−64

doi: 10.1111/j.1365-313X.2004.02082.x
[59]

Na X, Jian B, Yao W, Wu C, Hou W, et al. 2013. Cloning and functional analysis of the flowering gene GmSOC1-like, a putative SUPPRESSOR OF OVEREXPRESSION CO1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in soybean. Plant Cell Reports 32:1219−29

doi: 10.1007/s00299-013-1419-0