Search
Article Contents
Important Notice

This is accepted manuscript by the journal but prior to copy-editing or proofing. It can be cited using the author(s), article title, journal title, year of online publication, and DOI. It will be replaced by the final typeset version, which may therefore contain changes. The DOI will be remain the same.

ARTICLE   Open Access    

Genome-wide identification, characterization, evolution, and expression pattern analyses of MADS-box gene family in rambutan

  • # Authors contributed equally: Fei Dong, Suyan Wan

More Information
  • The MADS-box gene family of rambutan were analyzed..

    Expression pattern analysis was used to predict whether NlMADS genes could regulate the aril.

    NlMADS4, NlMADS30, and NlMADS69 were screened as the candidate genes for aril development.

  • Rambutan (Nephelium lappaceum L.) is a popular tropical fruit with a unique flavor and an economically valuable plant within the Sapindaceae family. MADS-box transcription factors are widely present in all eukaryotes and affect the morphogenesis, growth, and development of various plant organs. In this study, 75 MADS-box genes in rambutan were successfully characterized. Among them, 50 were identified as type I, including 24 Mα-type, 10 Mβ-type, and 16 Mγ-type genes. Twenty five were identified as type II, including 19 MIKCC and six MIKC* type genes. These NlMADS genes were randomly located on 16 chromosomes based on chromosomal mapping. Synteny analysis indicated the occurrence of seven pairs of tandem duplication and seven pairs of segmental duplication events. Prediction of cis-acting elements demonstrated the involvement of MADS-box genes in plant growth and development, hormone response, and stress response. RNA-seq data showed that most rambutan MADS-box genes were highly expressed in flowers and aril development, particularly within the MIKCC-type group. Notably, NlMADS4, NlMADS30, and NlMADS69 showed specific high expression during aril development, suggesting their critical role in this process. Furthermore, MIKCC-type MADS-box members displayed higher expression levels across different tissues, indicating their importance during plant growth and development. Protein-predicted regulatory networks suggested potential close interactions between MIKCC-type proteins in rambutan. The GO term enrichment analysis showed that the majority of genes might be involved in floral organ development (GO:0048437), embryo sac development (GO:0009553), and plant ovule development (GO:0048481). This paper conducted a comprehensive analysis of the rambutan MADS-box family for the first time, which will provide valuable insights into the molecular mechanisms governing flower and aril development in rambutan and other Sapindaceae species with aril structures.
    Graphical Abstract
  • Cite this article

    Dong F, Wan S, Zhang W. 2024. Genome-wide identification, characterization, evolution, and expression pattern analyses of MADS-box gene family in rambutan. Tropical Plants doi: 10.48130/tp-0024-0026
    Dong F, Wan S, Zhang W. 2024. Genome-wide identification, characterization, evolution, and expression pattern analyses of MADS-box gene family in rambutan. Tropical Plants doi: 10.48130/tp-0024-0026

Figures(10)

Article Metrics

Article views(53) PDF downloads(22)

Other Articles By Authors

Important Notice

This is accepted manuscript by the journal but prior to copy-editing or proofing. It can be cited using the author(s), article title, journal title, year of online publication, and DOI. It will be replaced by the final typeset version, which may therefore contain changes. The DOI will be remain the same.

ARTICLE   Open Access    

Genome-wide identification, characterization, evolution, and expression pattern analyses of MADS-box gene family in rambutan

Tropical Plants  Article in press  (2024)  |  Cite this article

Abstract: Rambutan (Nephelium lappaceum L.) is a popular tropical fruit with a unique flavor and an economically valuable plant within the Sapindaceae family. MADS-box transcription factors are widely present in all eukaryotes and affect the morphogenesis, growth, and development of various plant organs. In this study, 75 MADS-box genes in rambutan were successfully characterized. Among them, 50 were identified as type I, including 24 Mα-type, 10 Mβ-type, and 16 Mγ-type genes. Twenty five were identified as type II, including 19 MIKCC and six MIKC* type genes. These NlMADS genes were randomly located on 16 chromosomes based on chromosomal mapping. Synteny analysis indicated the occurrence of seven pairs of tandem duplication and seven pairs of segmental duplication events. Prediction of cis-acting elements demonstrated the involvement of MADS-box genes in plant growth and development, hormone response, and stress response. RNA-seq data showed that most rambutan MADS-box genes were highly expressed in flowers and aril development, particularly within the MIKCC-type group. Notably, NlMADS4, NlMADS30, and NlMADS69 showed specific high expression during aril development, suggesting their critical role in this process. Furthermore, MIKCC-type MADS-box members displayed higher expression levels across different tissues, indicating their importance during plant growth and development. Protein-predicted regulatory networks suggested potential close interactions between MIKCC-type proteins in rambutan. The GO term enrichment analysis showed that the majority of genes might be involved in floral organ development (GO:0048437), embryo sac development (GO:0009553), and plant ovule development (GO:0048481). This paper conducted a comprehensive analysis of the rambutan MADS-box family for the first time, which will provide valuable insights into the molecular mechanisms governing flower and aril development in rambutan and other Sapindaceae species with aril structures.

Figure (10) 
  • About this article
    Cite this article
    Dong F, Wan S, Zhang W. 2024. Genome-wide identification, characterization, evolution, and expression pattern analyses of MADS-box gene family in rambutan. Tropical Plants doi: 10.48130/tp-0024-0026
    Dong F, Wan S, Zhang W. 2024. Genome-wide identification, characterization, evolution, and expression pattern analyses of MADS-box gene family in rambutan. Tropical Plants doi: 10.48130/tp-0024-0026
  • Catalog

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return