[1]

Wang J, Qin L, Cheng J, Shang C, Li B, et al. 2022. Suitable chemical fertilizer reduction mitigates the water footprint of maize production: evidence from Northeast China. Environmental Science and Pollution Research 29:22589−601

doi: 10.1007/s11356-021-17336-2
[2]

Rahimi A, Mohammadi MM, Moghaddam SS, Heydarzadeh S, Gitari H. 2022. Effects of stress modifier biostimulants on vegetative growth, nutrients, and antioxidants contents of garden thyme (Thymus vulgaris L.) under water deficit conditions. Journal of Plant Growth Regulation 41:2059–72

doi: 10.1007/s00344-022-10604-6
[3]

Castiglione AM, Mannino G, Contartese V, Bertea CM, Ertani A. 2021. Microbial biostimulants as response to modern agriculture needs: composition, role and application of these innovative products. Plants 10:1533

doi: 10.3390/plants10081533
[4]

Aguirre E, Leménager D, Bacaicoa E, Fuentes M, Baigorri R, et al. 2009. The root application of a purified leonardite humic acid modifies the transcriptional regulation of the main physiological root responses to Fe deficiency in Fe-sufficient cucumber plants (vol 47, pg 215, 2008). Plant Physiology and Biochemistry 47:966

doi: 10.1016/j.plaphy.2009.06.004
[5]

Torabian S, Farhangi-Abriz S, Rathjen J. 2018. Biochar and lignite affect H+-ATPase and H+-PPase activities in root tonoplast and nutrient contents of mung bean under salt stress. Plant Physiology and Biochemistry 129:141−49

doi: 10.1016/j.plaphy.2018.05.030
[6]

Wang M, Chen Y, Zhang R, Wang W, Zhao X, et al. 2015. Effects of chitosan oligosaccharides on the yield components and production quality of different wheat cultivars (Triticum aestivum L.) in Northwest China. Field Crops Research 172:11−20

doi: 10.1016/j.fcr.2014.12.007
[7]

Brown P, Saa S. 2015. Biostimulants in agriculture. Frontiers in Plant Science 6:671

doi: 10.3389/fpls.2015.00671
[8]

Köhl J, Kolnaar R, Ravensberg WJ. 2019. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Frontiers in Plant Science 10:845

doi: 10.3389/fpls.2019.00845
[9]

Zhu H, Wang X, Wang X, Pan G, Zhu Y, et al. 2021. The toxicity and safety of Chinese medicine from the bench to the bedside. Journal of Herbal Medicine 28:100450

doi: 10.1016/j.hermed.2021.100450
[10]

Yazaki K, Matsuoka H, Shimomura K, Bechthold A, Sato F. 2001. A novel dark-inducible protein, LeDI-2, and its involvement in root-specific secondary metabolism in Lithospermum erythrorhizon. Plant Physiology 125:1831−41

doi: 10.1104/pp.125.4.1831
[11]

Chen L, Li J, Zhu Y, Zhao T, Guo L, et al. 2022. Weed suppression and molecular mechanisms of isochlorogenic acid A isolated from Artemisia argyi extract via an activity-guided method. Journal of Agricultural and Food Chemistry 70:1494−506

doi: 10.1021/acs.jafc.1c06417
[12]

Chen L, Li J, Zhu Y, Guo L, Ji R, et al. 2021. Caffeic acid, an allelochemical in Artemisia argyi, inhibits weed growth via suppression of mitogen-activated protein kinase signaling pathway and the biosynthesis of gibberellin and phytoalexin. Frontiers in Plant Science 12:802198

doi: 10.3389/fpls.2021.802198
[13]

Li J, Chen L, Chen Q, Miao Y, Peng Z, et al. 2021. Allelopathic effect of Artemisia argyi on the germination and growth of various weeds. Scientific Reports 11:4303

doi: 10.1038/s41598-021-83752-6
[14]

Zhang M, Cao B, Che L, Liu L, Su Y, et al. 2023. Post-harvest freezing injury reduces exterior quality of medicinal material and promotes transformation from glycosides to aglycones in Scutellaria baicalensis. Industrial Crops and Products 201:116915

doi: 10.1016/j.indcrop.2023.116915
[15]

Lu Y, Cao B, Su Y, Yang J, Xue Y, et al. 2022. Inter-specific differences of medicinal bioactive products are correlated with differential expressions of key enzyme genes in Scutellaria baicalensis and Scutellaria viscidula. Industrial Crops and Products 189:115758

doi: 10.1016/j.indcrop.2022.115758
[16]

Liao H, Ye J, Gao L, Liu Y. 2021. The main bioactive compounds of Scutellaria baicalensis Georgi. for alleviation of inflammatory cytokines: a comprehensive review. Biomedicine & Pharmaco therapy 133:110917

doi: 10.1016/j.biopha.2020.110917
[17]

Da X, Nishiyama Y, Tie D, Hein KZ, Yamamoto O, et al. 2019. Antifungal activity and mechanism of action of Ou-gon (Scutellaria root extract) components against pathogenic fungi. Scientific Reports 9:1683

doi: 10.1038/s41598-019-38916-w
[18]

Rakkammal K, Maharajan T, Ceasar SA, Ramesh M. 2023. Biostimulants and their role in improving plant growth under drought and salinity. Cereal Research Communications 51:61−74

doi: 10.1007/s42976-022-00299-6
[19]

Xu C, Ma M, Xin J, Li J, Ma F, et al. 2024. The active compound in Rheum officinale Baill, aloe-emodin promotes tomato seedling growth. Plant Growth Regulation 102:213−26

doi: 10.1007/s10725-023-00995-1
[20]

Liu Y, Roof S, Ye Z, Barry C, van Tuinen A, et al. 2004. Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proceedings of the National Academy of Sciences of the United States of America 101:9897−902

doi: 10.1073/pnas.0400935101
[21]

Barow M, Meister A. 2003. Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Plant, Cell & Environment 26:571−84

doi: 10.1046/j.1365-3040.2003.00988.x
[22]

Liu G, Yu H, Yuan L, Li C, Ye J, et al. 2021. SlRCM1, which encodes tomato Lutescent1, is required for chlorophyll synthesis and chloroplast development in fruits. Horticulture Research 8:128

doi: 10.1038/s41438-021-00563-6
[23]

Qu L, Wei Z, Chen H, Liu T, Liao K, et al. 2021. Plant casein kinases phosphorylate and destabilize a cyclin-dependent kinase inhibitor to promote cell division. Plant Physiology 187:917−30

doi: 10.1093/plphys/kiab284
[24]

Zhang Q, Ma C, Wang X, Ma Q, Fan S, et al. 2021. Genome-wide identification of the light-harvesting chlorophyll a/b binding (Lhc) family in Gossypium hirsutum reveals the influence of GhLhcb2.3 on chlorophyll a synthesis. Plant Biology 23:831−42

doi: 10.1111/plb.13294
[25]

Fukayama H, Mizumoto A, Ueguchi C, Katsunuma J, Morita R, et al. 2018. Expression level of Rubisco activase negatively correlates with Rubisco content in transgenic rice. Photosynthesis Research 137:465−74

doi: 10.1007/s11120-018-0525-9
[26]

Suzuki S, Endoh R, Manabe RI, Ohkuma M, Hirakawa Y. 2018. Multiple losses of photosynthesis and convergent reductive genome evolution in the colourless green algae Prototheca. Scientific Reports 8:940

doi: 10.1038/s41598-017-18378-8
[27]

Song S, Liu G, Ma F, Bao Z. 2022. Brassinazole represses tomato hypocotyl elongation via inhibition of cell division. Plant Growth Regulation 96:463−72

doi: 10.1007/s10725-022-00798-w
[28]

Zhang Y, Yin H, Zhao X, Wang W, Du Y, et al. 2014. The promoting effects of alginate oligosaccharides on root development in Oryza sativa L. mediated by auxin signaling. Carbohydrate Polymers 113:446−54

doi: 10.1016/j.carbpol.2014.06.079
[29]

Liu H, Zhang Y, Yin H, Wang W, Zhao X, et al. 2013. Alginate oligosaccharides enhanced Triticum aestivum L. tolerance to drought stress. Plant Physiology and Biochemistry 62:33−40

doi: 10.1016/j.plaphy.2012.10.012
[30]

Zhang Y, Liu H, Yin H, Wang W, Zhao X, et al. 2013. Nitric oxide mediates alginate oligosaccharides-induced root development in wheat (Triticum aestivum L.). Plant Physiology and Biochemistry 71:49−56

doi: 10.1016/j.plaphy.2013.06.023
[31]

Panfili I, Bartucca ML, Marrollo G, Povero G, Del Buono D. 2019. Correction to application of a plant biostimulant to improve maize (Zea mays) tolerance to metolachlor. Journal of Agricultural and Food Chemistry 67:14005

doi: 10.1021/acs.jafc.9b07118
[32]

Bi D, Yang X, Lu J, Xu X. 2022. Preparation and potential applications of alginate oligosaccharides. Critical Reviews in Food Science and Nutrition 63:10130−47

doi: 10.1080/10408398.2022.2067832
[33]

Liu M, Yang Q, Hua Q, Liu J, He W, et al. 2021. Chinese medicinal herbs for idiopathic membranous nephropathy in adults with nephrotic syndrome: a systematic review of effectiveness and safety. Medicine 100:e27953

doi: 10.1097/MD.0000000000027953
[34]

Niu C, Wang G, Sui J, Liu G, Ma F, et al. 2022. Biostimulants alleviate temperature stress in tomato seedlings. Scientia Horticulturae 293:110712

doi: 10.1016/j.scienta.2021.110712
[35]

Ebinezer LB, Franchin C, Trentin AR, Carletti P, Trevisan S, et al. 2020. Quantitative proteomics of maize roots treated with a protein hydrolysate: a comparative study with transcriptomics highlights the molecular mechanisms responsive to biostimulants. Journal of Agricultural and Food Chemistry 68:7541−53

doi: 10.1021/acs.jafc.0c01593
[36]

Lee HJ, Lee JH, Lee SG, An S, Lee HS, et al. 2019. Foliar application of biostimulants affects physiological responses and improves heat stress tolerance in Kimchi cabbage. Horticulture, Environment, and Biotechnology 60:841−51

doi: 10.1007/s13580-019-00193-x
[37]

Fernandes Â, Chaski C, Pereira C, Kostić M, Rouphael Y, et al. 2022. Water Stress alleviation effects of biostimulants on greenhouse-grown tomato fruit. Horticulturae 8:645

doi: 10.3390/horticulturae8070645
[38]

Cameron A, Sarojini V. 2014. Pseudomonas syringae pv. actinidiae: chemical control, resistance mechanisms and possible alternatives. Plant Pathology 63:1−11

doi: 10.1111/ppa.12066
[39]

Xu Y, Wieloch T, Kaste JAM, Shachar-Hill Y, Sharkey TD. 2022. Reimport of carbon from cytosolic and vacuolar sugar pools into the Calvin-Benson cycle explains photosynthesis labeling anomalies. Proceedings of the National Academy of Sciences of the United States of America 119:e2121531119

doi: 10.1073/pnas.2121531119
[40]

Sukkasam N, Incharoensakdi A, Monshupanee T. 2022. Disruption of hydrogen gas synthesis enhances the cellular levels of NAD(P)H, glycogen, poly(3-hydroxybutyrate) and photosynthetic pigments under specific nutrient condition(s) in cyanobacterium Synechocystis sp. PCC 6803. Plant and Cell Physiology 63: 135−47

doi: 10.1093/pcp/pcab156
[41]

Salas-González I, Reyt G, Flis P, Custódio V, Gopaulchan D, et al. 2021. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science 371:eabd0695

doi: 10.1126/science.abd0695
[42]

Wu J, Zhao H, Wang X. 2022. Soil microbes influence nitrogen limitation on plant biomass in alpine steppe in North Tibet. Plant and Soil 474:395−409

doi: 10.1007/s11104-022-05343-2
[43]

Furbank RT, Quick WP, Sirault XRR. 2015. Improving photosynthesis and yield potential in cereal crops by targeted genetic manipulation: Prospects, progress and challenges. Field Crops Research 182:19−29

doi: 10.1016/j.fcr.2015.04.009
[44]

Tamirisa S, Vudem DR, Khareedu VR. 2017. A cyclin dependent kinase regulatory subunit (CKS) Gene of pigeonpea imparts abiotic stress tolerance and regulates plant growth and development in Arabidopsis. Frontiers in Plant Science 8:165

doi: 10.3389/fpls.2017.00165
[45]

Chan Z. 2012. Expression profiling of ABA pathway transcripts indicates crosstalk between abiotic and biotic stress responses in Arabidopsis. Genomics 100:110−15

doi: 10.1016/j.ygeno.2012.06.004
[46]

Kulkarni MG, Stirk WA, Southway C, Papenfus HB, Swart PA, et al. 2013. Plant growth regulators enhance gold uptake in Brassica juncea. International Journal of Phytoremediation 15:117−26

doi: 10.1080/15226514.2012.683207
[47]

Xiao T, Boada R, Marini C, Llugany M, Valiente M. 2020. Influence of a plant biostimulant on the uptake, distribution and speciation of Se in Se-enriched wheat (Triticum aestivum L. cv. Pinzón). Plant and Soil 455:409−23

doi: 10.1007/s11104-020-04686-y
[48]

Chennappa G, Sreenivasa MY, Nagaraja H. 2018. Azotobacter salinestris: a novel pesticide-degrading and prominent biocontrol PGPR bacteria. In Microorganisms for Green Revolution, eds. Panpatte D, Jhala Y, Shelat H, Vyas R. Vol. 7. Singapore: Springer. pp. 23−43. https://doi.org/10.1007/978-981-10-7146-1_2

[49]

Jing J, Zhang S, Yuan L, Li Y, Zhang Y, et al. 2022. Synergistic effects of humic acid and phosphate fertilizer facilitate root proliferation and phosphorus uptake in low-fertility soil. Plant and Soil 478:491−503

doi: 10.1007/s11104-022-05486-2