[1]
|
Wang J, Qin L, Cheng J, Shang C, Li B, et al. 2022. Suitable chemical fertilizer reduction mitigates the water footprint of maize production: evidence from Northeast China. Environmental Science and Pollution Research 29:22589−601 doi: 10.1007/s11356-021-17336-2
CrossRef Google Scholar
|
[2]
|
Rahimi A, Mohammadi MM, Moghaddam SS, Heydarzadeh S, Gitari H. 2022. Effects of stress modifier biostimulants on vegetative growth, nutrients, and antioxidants contents of garden thyme (Thymus vulgaris L.) under water deficit conditions. Journal of Plant Growth Regulation 41:2059–72 doi: 10.1007/s00344-022-10604-6
CrossRef Google Scholar
|
[3]
|
Castiglione AM, Mannino G, Contartese V, Bertea CM, Ertani A. 2021. Microbial biostimulants as response to modern agriculture needs: composition, role and application of these innovative products. Plants 10:1533 doi: 10.3390/plants10081533
CrossRef Google Scholar
|
[4]
|
Aguirre E, Leménager D, Bacaicoa E, Fuentes M, Baigorri R, et al. 2009. The root application of a purified leonardite humic acid modifies the transcriptional regulation of the main physiological root responses to Fe deficiency in Fe-sufficient cucumber plants (vol 47, pg 215, 2008). Plant Physiology and Biochemistry 47:966 doi: 10.1016/j.plaphy.2009.06.004
CrossRef Google Scholar
|
[5]
|
Torabian S, Farhangi-Abriz S, Rathjen J. 2018. Biochar and lignite affect H+-ATPase and H+-PPase activities in root tonoplast and nutrient contents of mung bean under salt stress. Plant Physiology and Biochemistry 129:141−49 doi: 10.1016/j.plaphy.2018.05.030
CrossRef Google Scholar
|
[6]
|
Wang M, Chen Y, Zhang R, Wang W, Zhao X, et al. 2015. Effects of chitosan oligosaccharides on the yield components and production quality of different wheat cultivars (Triticum aestivum L.) in Northwest China. Field Crops Research 172:11−20 doi: 10.1016/j.fcr.2014.12.007
CrossRef Google Scholar
|
[7]
|
Brown P, Saa S. 2015. Biostimulants in agriculture. Frontiers in Plant Science 6:671 doi: 10.3389/fpls.2015.00671
CrossRef Google Scholar
|
[8]
|
Köhl J, Kolnaar R, Ravensberg WJ. 2019. Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Frontiers in Plant Science 10:845 doi: 10.3389/fpls.2019.00845
CrossRef Google Scholar
|
[9]
|
Zhu H, Wang X, Wang X, Pan G, Zhu Y, et al. 2021. The toxicity and safety of Chinese medicine from the bench to the bedside. Journal of Herbal Medicine 28:100450 doi: 10.1016/j.hermed.2021.100450
CrossRef Google Scholar
|
[10]
|
Yazaki K, Matsuoka H, Shimomura K, Bechthold A, Sato F. 2001. A novel dark-inducible protein, LeDI-2, and its involvement in root-specific secondary metabolism in Lithospermum erythrorhizon. Plant Physiology 125:1831−41 doi: 10.1104/pp.125.4.1831
CrossRef Google Scholar
|
[11]
|
Chen L, Li J, Zhu Y, Zhao T, Guo L, et al. 2022. Weed suppression and molecular mechanisms of isochlorogenic acid A isolated from Artemisia argyi extract via an activity-guided method. Journal of Agricultural and Food Chemistry 70:1494−506 doi: 10.1021/acs.jafc.1c06417
CrossRef Google Scholar
|
[12]
|
Chen L, Li J, Zhu Y, Guo L, Ji R, et al. 2021. Caffeic acid, an allelochemical in Artemisia argyi, inhibits weed growth via suppression of mitogen-activated protein kinase signaling pathway and the biosynthesis of gibberellin and phytoalexin. Frontiers in Plant Science 12:802198 doi: 10.3389/fpls.2021.802198
CrossRef Google Scholar
|
[13]
|
Li J, Chen L, Chen Q, Miao Y, Peng Z, et al. 2021. Allelopathic effect of Artemisia argyi on the germination and growth of various weeds. Scientific Reports 11:4303 doi: 10.1038/s41598-021-83752-6
CrossRef Google Scholar
|
[14]
|
Zhang M, Cao B, Che L, Liu L, Su Y, et al. 2023. Post-harvest freezing injury reduces exterior quality of medicinal material and promotes transformation from glycosides to aglycones in Scutellaria baicalensis. Industrial Crops and Products 201:116915 doi: 10.1016/j.indcrop.2023.116915
CrossRef Google Scholar
|
[15]
|
Lu Y, Cao B, Su Y, Yang J, Xue Y, et al. 2022. Inter-specific differences of medicinal bioactive products are correlated with differential expressions of key enzyme genes in Scutellaria baicalensis and Scutellaria viscidula. Industrial Crops and Products 189:115758 doi: 10.1016/j.indcrop.2022.115758
CrossRef Google Scholar
|
[16]
|
Liao H, Ye J, Gao L, Liu Y. 2021. The main bioactive compounds of Scutellaria baicalensis Georgi. for alleviation of inflammatory cytokines: a comprehensive review. Biomedicine & Pharmacotherapy 133:110917 doi: 10.1016/j.biopha.2020.110917
CrossRef Google Scholar
|
[17]
|
Da X, Nishiyama Y, Tie D, Hein KZ, Yamamoto O, et al. 2019. Antifungal activity and mechanism of action of Ou-gon (Scutellaria root extract) components against pathogenic fungi. Scientific Reports 9:1683 doi: 10.1038/s41598-019-38916-w
CrossRef Google Scholar
|
[18]
|
Rakkammal K, Maharajan T, Ceasar SA, Ramesh M. 2023. Biostimulants and their role in improving plant growth under drought and salinity. Cereal Research Communications 51:61−74 doi: 10.1007/s42976-022-00299-6
CrossRef Google Scholar
|
[19]
|
Xu C, Ma M, Xin J, Li J, Ma F, et al. 2024. The active compound in Rheum officinale Baill, aloe-emodin promotes tomato seedling growth. Plant Growth Regulation 102:213−26 doi: 10.1007/s10725-023-00995-1
CrossRef Google Scholar
|
[20]
|
Liu Y, Roof S, Ye Z, Barry C, van Tuinen A, et al. 2004. Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proceedings of the National Academy of Sciences of the United States of America 101:9897−902 doi: 10.1073/pnas.0400935101
CrossRef Google Scholar
|
[21]
|
Barow M, Meister A. 2003. Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Plant, Cell & Environment 26:571−84 doi: 10.1046/j.1365-3040.2003.00988.x
CrossRef Google Scholar
|
[22]
|
Liu G, Yu H, Yuan L, Li C, Ye J, et al. 2021. SlRCM1, which encodes tomato Lutescent1, is required for chlorophyll synthesis and chloroplast development in fruits. Horticulture Research 8:128 doi: 10.1038/s41438-021-00563-6
CrossRef Google Scholar
|
[23]
|
Qu L, Wei Z, Chen H, Liu T, Liao K, et al. 2021. Plant casein kinases phosphorylate and destabilize a cyclin-dependent kinase inhibitor to promote cell division. Plant Physiology 187:917−30 doi: 10.1093/plphys/kiab284
CrossRef Google Scholar
|
[24]
|
Zhang Q, Ma C, Wang X, Ma Q, Fan S, et al. 2021. Genome-wide identification of the light-harvesting chlorophyll a/b binding (Lhc) family in Gossypium hirsutum reveals the influence of GhLhcb2.3 on chlorophyll a synthesis. Plant Biology 23:831−42 doi: 10.1111/plb.13294
CrossRef Google Scholar
|
[25]
|
Fukayama H, Mizumoto A, Ueguchi C, Katsunuma J, Morita R, et al. 2018. Expression level of Rubisco activase negatively correlates with Rubisco content in transgenic rice. Photosynthesis Research 137:465−74 doi: 10.1007/s11120-018-0525-9
CrossRef Google Scholar
|
[26]
|
Suzuki S, Endoh R, Manabe RI, Ohkuma M, Hirakawa Y. 2018. Multiple losses of photosynthesis and convergent reductive genome evolution in the colourless green algae Prototheca. Scientific Reports 8:940 doi: 10.1038/s41598-017-18378-8
CrossRef Google Scholar
|
[27]
|
Song S, Liu G, Ma F, Bao Z. 2022. Brassinazole represses tomato hypocotyl elongation via inhibition of cell division. Plant Growth Regulation 96:463−72 doi: 10.1007/s10725-022-00798-w
CrossRef Google Scholar
|
[28]
|
Zhang Y, Yin H, Zhao X, Wang W, Du Y, et al. 2014. The promoting effects of alginate oligosaccharides on root development in Oryza sativa L. mediated by auxin signaling. Carbohydrate Polymers 113:446−54 doi: 10.1016/j.carbpol.2014.06.079
CrossRef Google Scholar
|
[29]
|
Liu H, Zhang Y, Yin H, Wang W, Zhao X, et al. 2013. Alginate oligosaccharides enhanced Triticum aestivum L. tolerance to drought stress. Plant Physiology and Biochemistry 62:33−40 doi: 10.1016/j.plaphy.2012.10.012
CrossRef Google Scholar
|
[30]
|
Zhang Y, Liu H, Yin H, Wang W, Zhao X, et al. 2013. Nitric oxide mediates alginate oligosaccharides-induced root development in wheat (Triticum aestivum L.). Plant Physiology and Biochemistry 71:49−56 doi: 10.1016/j.plaphy.2013.06.023
CrossRef Google Scholar
|
[31]
|
Panfili I, Bartucca ML, Marrollo G, Povero G, Del Buono D. 2019. Correction to application of a plant biostimulant to improve maize (Zea mays) tolerance to metolachlor. Journal of Agricultural and Food Chemistry 67:14005 doi: 10.1021/acs.jafc.9b07118
CrossRef Google Scholar
|
[32]
|
Bi D, Yang X, Lu J, Xu X. 2022. Preparation and potential applications of alginate oligosaccharides. Critical Reviews in Food Science and Nutrition 63:10130−47 doi: 10.1080/10408398.2022.2067832
CrossRef Google Scholar
|
[33]
|
Liu M, Yang Q, Hua Q, Liu J, He W, et al. 2021. Chinese medicinal herbs for idiopathic membranous nephropathy in adults with nephrotic syndrome: a systematic review of effectiveness and safety. Medicine 100:e27953 doi: 10.1097/MD.0000000000027953
CrossRef Google Scholar
|
[34]
|
Niu C, Wang G, Sui J, Liu G, Ma F, et al. 2022. Biostimulants alleviate temperature stress in tomato seedlings. Scientia Horticulturae 293:110712 doi: 10.1016/j.scienta.2021.110712
CrossRef Google Scholar
|
[35]
|
Ebinezer LB, Franchin C, Trentin AR, Carletti P, Trevisan S, et al. 2020. Quantitative proteomics of maize roots treated with a protein hydrolysate: a comparative study with transcriptomics highlights the molecular mechanisms responsive to biostimulants. Journal of Agricultural and Food Chemistry 68:7541−53 doi: 10.1021/acs.jafc.0c01593
CrossRef Google Scholar
|
[36]
|
Lee HJ, Lee JH, Lee SG, An S, Lee HS, et al. 2019. Foliar application of biostimulants affects physiological responses and improves heat stress tolerance in Kimchi cabbage. Horticulture, Environment, and Biotechnology 60:841−51 doi: 10.1007/s13580-019-00193-x
CrossRef Google Scholar
|
[37]
|
Fernandes Â, Chaski C, Pereira C, Kostić M, Rouphael Y, et al. 2022. Water Stress alleviation effects of biostimulants on greenhouse-grown tomato fruit. Horticulturae 8:645 doi: 10.3390/horticulturae8070645
CrossRef Google Scholar
|
[38]
|
Cameron A, Sarojini V. 2014. Pseudomonas syringae pv. actinidiae: chemical control, resistance mechanisms and possible alternatives. Plant Pathology 63:1−11 doi: 10.1111/ppa.12066
CrossRef Google Scholar
|
[39]
|
Xu Y, Wieloch T, Kaste JAM, Shachar-Hill Y, Sharkey TD. 2022. Reimport of carbon from cytosolic and vacuolar sugar pools into the Calvin-Benson cycle explains photosynthesis labeling anomalies. Proceedings of the National Academy of Sciences of the United States of America 119:e2121531119 doi: 10.1073/pnas.2121531119
CrossRef Google Scholar
|
[40]
|
Sukkasam N, Incharoensakdi A, Monshupanee T. 2022. Disruption of hydrogen gas synthesis enhances the cellular levels of NAD(P)H, glycogen, poly(3-hydroxybutyrate) and photosynthetic pigments under specific nutrient condition(s) in cyanobacterium Synechocystis sp. PCC 6803. Plant and Cell Physiology 63: 135−47 doi: 10.1093/pcp/pcab156
CrossRef Google Scholar
|
[41]
|
Salas-González I, Reyt G, Flis P, Custódio V, Gopaulchan D, et al. 2021. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science 371:eabd0695 doi: 10.1126/science.abd0695
CrossRef Google Scholar
|
[42]
|
Wu J, Zhao H, Wang X. 2022. Soil microbes influence nitrogen limitation on plant biomass in alpine steppe in North Tibet. Plant and Soil 474:395−409 doi: 10.1007/s11104-022-05343-2
CrossRef Google Scholar
|
[43]
|
Furbank RT, Quick WP, Sirault XRR. 2015. Improving photosynthesis and yield potential in cereal crops by targeted genetic manipulation: Prospects, progress and challenges. Field Crops Research 182:19−29 doi: 10.1016/j.fcr.2015.04.009
CrossRef Google Scholar
|
[44]
|
Tamirisa S, Vudem DR, Khareedu VR. 2017. A cyclin dependent kinase regulatory subunit (CKS) Gene of pigeonpea imparts abiotic stress tolerance and regulates plant growth and development in Arabidopsis. Frontiers in Plant Science 8:165 doi: 10.3389/fpls.2017.00165
CrossRef Google Scholar
|
[45]
|
Chan Z. 2012. Expression profiling of ABA pathway transcripts indicates crosstalk between abiotic and biotic stress responses in Arabidopsis. Genomics 100:110−15 doi: 10.1016/j.ygeno.2012.06.004
CrossRef Google Scholar
|
[46]
|
Kulkarni MG, Stirk WA, Southway C, Papenfus HB, Swart PA, et al. 2013. Plant growth regulators enhance gold uptake in Brassica juncea. International Journal of Phytoremediation 15:117−26 doi: 10.1080/15226514.2012.683207
CrossRef Google Scholar
|
[47]
|
Xiao T, Boada R, Marini C, Llugany M, Valiente M. 2020. Influence of a plant biostimulant on the uptake, distribution and speciation of Se in Se-enriched wheat (Triticum aestivum L. cv. Pinzón). Plant and Soil 455:409−23 doi: 10.1007/s11104-020-04686-y
CrossRef Google Scholar
|
[48]
|
Chennappa G, Sreenivasa MY, Nagaraja H. 2018. Azotobacter salinestris: a novel pesticide-degrading and prominent biocontrol PGPR bacteria. In Microorganisms for Green Revolution, eds. Panpatte D, Jhala Y, Shelat H, Vyas R. Vol. 7. Singapore: Springer. pp. 23−43. https://doi.org/10.1007/978-981-10-7146-1_2
|
[49]
|
Jing J, Zhang S, Yuan L, Li Y, Zhang Y, et al. 2022. Synergistic effects of humic acid and phosphate fertilizer facilitate root proliferation and phosphorus uptake in low-fertility soil. Plant and Soil 478:491−503 doi: 10.1007/s11104-022-05486-2
CrossRef Google Scholar
|