[1] |
Stratford S, Barnes W, Hohorst DL, Sagert JG, Cotter R, et al. 2001. A leucine-rich repeat region is conserved in pollen extensin-like (Pex) proteins inmonocots and dicots. Plant Molecular Biology 46:43−56 doi: 10.1023/A:1010659425399 |
[2] |
Chen T. 2021. Identification and characterization of the LRR repeats in plant LRR-RLKs. BMC Molecular and Cell Biology 22:9 doi: 10.1186/s12860-021-00344-y |
[3] |
Bedinger P. 2018. Coordinating cell walls and cell growth: a role for LRX extensin chimeras. Plant Physiology 176:1890−91 doi: 10.1104/pp.18.00084 |
[4] |
Borassi C, Sede AR, Mecchia MA, Salgado Salter JD, Marzol E, et al. 2016. An update on cell surface proteins containing extensin-motifs. Journal of Experimental Botany 67:477−87 doi: 10.1093/jxb/erv455 |
[5] |
Showalter AM, Basu D. 2016. Extensin and arabinogalactan-protein biosynthesis: glycosyltransferases, research challenges, and biosensors. Frontiers in Plant Science 7:814 doi: 10.3389/fpls.2016.00814 |
[6] |
Herger A, Dünser K, Kleine-Vehn J, Ringli C. 2019. Leucine-rich repeat extensin proteins and their role in cell wall sensing. Current Biology 29:R851−R58 doi: 10.1016/j.cub.2019.07.039 |
[7] |
Kieliszewski MJ, Lamport DTA. 1994. Extensin: repetitive motifs, functional sites, post-translational codes, and phylogeny. The Plant Journal 5:157−72 doi: 10.1046/j.1365-313X.1994.05020157.x |
[8] |
Ringli C. 2010. The hydroxyproline-rich glycoprotein domain of the Arabidopsis LRX1 requires Tyr for function but not for insolubilization in the cell wall. The Plant Journal 63:662−69 doi: 10.1111/j.1365-313X.2010.04270.x |
[9] |
Baumberger N, Steiner M, Ryser U, Keller B, Ringli C. 2003. Synergistic interaction of the two paralogous Arabidopsis genes LRX1 and LRX2 in cell wall formation during root hair development. The Plant Journal 35:71−81 doi: 10.1046/j.1365-313X.2003.01784.x |
[10] |
Herger A, Gupta S, Kadler G, Franck CM, Boisson-Dernier A, et al. 2020. Overlapping functions and protein-protein interactions of LRR-extensins in Arabidopsis. PLoS Genetics 16:e1008847 doi: 10.1371/journal.pgen.1008847 |
[11] |
Baumberger N, Ringli C, Keller B. 2001. The chimeric leucine-rich repeat/extensin cell wall protein LRX1 is required for root hair morphogenesis in Arabidopsis thaliana. Genes & Development 15:1128−39 doi: 10.1101/gad.200201 |
[12] |
Zhao C, Zayed O, Yu Z, Jiang W, Zhu P, et al. 2018. Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 115:13123−28 doi: 10.1073/pnas.1816991115 |
[13] |
Zhang X, Yang Z, Wu D, Yu F. 2020. RALF–FERONIA signaling: linking plant immune response with cell growth. Plant Communications 1:100084 doi: 10.1016/j.xplc.2020.100084 |
[14] |
Zhao C, Jiang W, Zayed O, Liu X, Tang K, et al. 2021. The LRXs-RALFs-FER module controls plant growth and salt stress responses by modulating multiple plant hormones. National Science Review 8:nwaa149 doi: 10.1093/nsr/nwaa149 |
[15] |
Fabrice TN, Vogler H, Draeger C, Munglani G, Gupta S, et al. 2018. LRX proteins play a crucial role in pollen grain and pollen tube cell wall development. Plant Physiology 176:1981−92 doi: 10.1104/pp.17.01374 |
[16] |
Sede AR, Borassi C, Wengier DL, Mecchia MA, Estevez JM, et al. 2018. Arabidopsis pollen extensins LRX are required for cell wall integrity during pollen tube growth. FEBS Letters 592:233−43 doi: 10.1002/1873-3468.12947 |
[17] |
Wang X, Wang K, Yin G, Liu X, Liu M, et al. 2018. Pollen-expressed leucine-rich repeat extensins are essential for pollen germination and growth. Plant Physiology 176:1993−2006 doi: 10.1104/pp.17.01241 |
[18] |
Mecchia MA, Santos-Fernandez G, Duss NN, Somoza SC, Boisson-Dernier A, et al. 2017. RALF4/19 peptides interact with LRX proteins to control pollen tube growth in Arabidopsis. Science 358:1600−03 doi: 10.1126/science.aao5467 |
[19] |
Franck CM, Westermann J, Boisson-Dernier A. 2018. Plant malectin-like receptor kinases: from cell wall integrity to immunity and beyond. Annual Review of Plant Biology 69:301−28 doi: 10.1146/annurev-arplant-042817-040557 |
[20] |
Ge Z, Zhao Y, Liu MC, Zhou LZ, Wang L, et al. 2019. LLG2/3 are co-receptors in BUPS/ANX-RALF signaling to regulate Arabidopsis pollen tube integrity. Current Biology 29:3256−3265.e5 doi: 10.1016/j.cub.2019.08.032 |
[21] |
Li J, Zhang Y, Li Z, Dai H, Luan X, et al. 2023. OsPEX1, an extensin-like protein, negatively regulates root growth in a gibberellin-mediated manner in rice. Plant Molecular Biology 112:47−59 doi: 10.1007/s11103-023-01347-3 |
[22] |
Rubinstein AL, Broadwater AH, Lowrey KB, Bedinger PA. 1995. Pexl, a pollen-specfic gene with an extensin-like domain. Proceedings of the National Academy of Sciences of the United States of America 92:3086−90 doi: 10.1073/pnas.92.8.3086 |
[23] |
Schaefer H, Renner SS. 2011. Phylogenetic relationships in the order Cucurbitales and a new classification of the gourd family (Cucurbitaceae). TAXON 60:122−38 doi: 10.1002/tax.601011 |
[24] |
Chomicki G, Schaefer H, Renner SS. 2020. Origin and domestication of Cucurbitaceae crops: insights from phylogenies, genomics and archaeology. New Phytologist 226:1240−55 doi: 10.1111/nph.16015 |
[25] |
Ramalhete C, Gonçalves BMF, Barbosa F, Duarte N, Ferreira MJU. 2022. Momordica balsamina: phytochemistry and pharmacological potential of a gifted species. Phytochemistry Reviews 21:617−46 doi: 10.1007/s11101-022-09802-7 |
[26] |
Perkins-Veazie P, Collins JK, Davis AR, Roberts W. 2006. Carotenoid content of 50 watermelon cultivars. Journal of Agricultural and Food Chemistry 54:2593−97 doi: 10.1021/jf052066p |
[27] |
Han X, Liu C, Liu Y, Xu Q, Li X, et al. 2013. New triterpenoids and other constituents from the fruits of benincasa hispida (Thunb.) Cogn. Journal of Agricultural and Food Chemistry 61:12692−99 doi: 10.1021/jf405384r |
[28] |
Omokhua-Uyi AG, Van Staden J. 2020. Phytomedicinal relevance of South African Cucurbitaceae species and their safety assessment: a review. Journal of Ethnopharmacology 259:112967 doi: 10.1016/j.jep.2020.112967 |
[29] |
Thoennissen NH, Iwanski GB, Doan NB, Okamoto R, Lin P, et al. 2009. Cucurbitacin B induces apoptosis by inhibition of the JAK/STAT pathway and potentiates antiproliferative effects of gemcitabine on pancreatic cancer cells. Cancer Research 69:5876−84 doi: 10.1158/0008-5472.CAN-09-0536 |
[30] |
Gu M, Fan S, Liu G, Guo L, Ding X, et al. 2013. Extract of wax gourd peel prevents high-fat diet-induced hyperlipidemia in C57BL/6 mice via the inhibition of the PPARγ pathway. Evidence-Based Complementary and Alternative Medicine 2013:342561 doi: 10.1155/2013/342561 |
[31] |
Wang C, Shen X, Yang T, Yao H, Peng X, et al. 2023. Genome-wide characterization and identification of root development and stress-related genes. Vegetable Research 3:19 doi: 10.48130/VR-2023-0019 |
[32] |
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202 doi: 10.1016/j.molp.2020.06.009 |
[33] |
Draeger C, Ndinyanka Fabrice T, Gineau E, Mouille G, Kuhn BM, et al. 2015. Arabidopsis leucine-rich repeat extensin (LRX) proteins modify cell wall composition and influence plant growth. BMC Plant Biology 15:155 doi: 10.1186/s12870-015-0548-8 |
[34] |
Baumberger N, Doesseger B, Guyot R, Diet A, Parsons RL, et al. 2003. Whole-genome comparison of leucine-rich repeat extensins in Arabidopsis and rice. A conserved family of cell wall proteins form a vegetative and a reproductive clade. Plant Physiology 131:1313−26 doi: 10.1104/pp.102.014928 |
[35] |
Yin S, Li S, Gao Y, Bartholomew ES, Wang R, et al. 2022. Genome-wide identification of YABBY gene family in Cucurbitaceae and expression analysis in Cucumber (Cucumis sativus L.). Genes 13:467 doi: 10.3390/genes13030467 |
[36] |
Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, et al. 2003. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research 31:3784−88 doi: 10.1093/nar/gkg563 |
[37] |
Bailey TL, Johnson J, Grant CE, Noble WS. 2015. The MEME suite. Nucleic Acids Research 43:W39−W49 doi: 10.1093/nar/gkv416 |
[38] |
Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, et al. 2019. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Research 48:D265−D268 doi: 10.1093/nar/gkz991 |
[39] |
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30:325−27 doi: 10.1093/nar/30.1.325 |
[40] |
Wang Y, Tang H, DeBarry JD, Tan X, Li J, et al. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research 40:e49 doi: 10.1093/nar/gkr1293 |
[41] |
Kaltenegger E, Leng S, Heyl A. 2018. The effects of repeated whole genome duplication events on the evolution of cytokinin signaling pathway. BMC Evolutionary Biology 18:76 doi: 10.1186/s12862-018-1153-x |
[42] |
Laporte P, Lepage A, Fournier J, Catrice O, Moreau S, et al. 2014. The CCAAT box-binding transcription factor NF-YA1 controls rhizobial infection. Journal of Experimental Botany 65:481−94 doi: 10.1093/jxb/ert392 |
[43] |
Jiang J, Ma S, Ye N, Jiang M, Cao J, et al. 2017. WRKY transcription factors in plant responses to stresses. Journal of Integrative Plant Biology 59:86−101 doi: 10.1111/jipb.12513 |
[44] |
Huang J, Liu F, Chao D, Xin B, Liu K, et al. 2022. The WRKY transcription factor OsWRKY54 is involved in salt tolerance in rice. International Journal of Molecular Sciences 23:11999 doi: 10.3390/ijms231911999 |
[45] |
Bacete L, Schulz J, Engelsdorf T, Bartosova Z, Vaahtera L, et al. 2022. THESEUS1 modulates cell wall stiffness and abscisic acid production in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 119:e2119258119 doi: 10.1073/pnas.2119258119 |
[46] |
Hord CLH, Chen C, Deyoung BJ, Clark SE, Ma H. 2006. The BAM1/BAM2 receptor-like kinases are important regulators of Arabidopsis early anther development. The Plant Cell 18:1667−80 doi: 10.1105/tpc.105.036871 |
[47] |
Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, et al. 2012. The genome of melon (Cucumis melo L.). Proceedings of the National Academy of Sciences of the United States of America 109:11872−77 doi: 10.1073/pnas.1205415109 |
[48] |
Guo S, Zhang J, Sun H, Salse J, Lucas WJ, et al. 2012. The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nature Genetics 45:51−58 doi: 10.1038/ng.2470 |
[49] |
Sun H, Wu S, Zhang G, Jiao C, Guo S, et al. 2017. Karyotype stability and unbiased fractionation in the paleo-allotetraploid Cucurbita genomes. Molecular Plant 10:1293−306 doi: 10.1016/j.molp.2017.09.003 |
[50] |
Wu S, Shamimuzzaman M, Sun H, Salse J, Sui X, et al. 2017. The bottle gourd genome provides insights into Cucurbitaceae evolution and facilitates mapping of a Papaya ring-spot virus resistance locus. The Plant Journal 92:963−75 doi: 10.1111/tpj.13722 |
[51] |
Li Q, Li H, Huang W, Xu Y, Zhou Q, et al. 2019. A chromosome-scale genome assembly of cucumber (Cucumis sativus L.). GigaScience 8:giz072 doi: 10.1093/gigascience/giz072 |
[52] |
Xie D, Xu Y, Wang J, Liu W, Zhou Q, et al. 2019. The wax gourd genomes offer insights into the genetic diversity and ancestral cucurbit karyotype. Nature Communications 10:5158 doi: 10.1038/s41467-019-13185-3 |
[53] |
Cui J, Yang Y, Luo S, Wang L, Huang R, et al. 2020. Whole-genome sequencing provides insights into the genetic diversity and domestication of bitter gourd (Momordica spp.). Horticulture Research 7:85 doi: 10.1038/s41438-020-0305-5 |
[54] |
Li W. 2023. Genomics of the oldest domesticated wheat. Nature Genetics 55:1421 doi: 10.1038/s41588-023-01512-w |
[55] |
Hernandez-Garcia CM, Finer JJ. 2014. Identification and validation of promoters and cis-acting regulatory elements. Plant Science 217−218:109−19 doi: 10.1016/j.plantsci.2013.12.007 |
[56] |
Zhu JK. 2016. Abiotic stress signaling and responses in plants. Cell 167:313−24 doi: 10.1016/j.cell.2016.08.029 |