[1] |
Smith P. 2013. Delivering food security without increasing pressure on land. Global Food Security 2:18−23 doi: 10.1016/j.gfs.2012.11.008 |
[2] |
Ortiz-Bobea A, Ault TR, Carrillo CM, Chambers RG, Lobel DB. 2021. Anthropogenic climate change has slowed global agricultural productivity growth. Nature Climate Change 11:306−12 doi: 10.1038/s41558-021-01000-1 |
[3] |
Gu B, Zhang X, Lam SK, Yu Y, van Grinsven HJM, et al. 2023. Cost-effective mitigation of nitrogen pollution from global croplands. Nature 613:77−84 doi: 10.1038/s41586-022-05481-8 |
[4] |
Peng Y, Yang J, Li X, Zhang Y. 2021. Salicylic acid: biosynthesis and signaling. Annual Review of Plant Biology 72:761−91 doi: 10.1146/annurev-arplant-081320-092855 |
[5] |
Li N, Han X, Feng D, Yuan D, Li J. 2019. Signaling crosstalk between salicylic acid and ethylene/jasmonate in plant defense: do we understand what they are whispering? International Journal of Molecular Sciences 20:671 doi: 10.3390/ijms20030671 |
[6] |
Ding P, Ding Y. 2020. Stories of salicylic acid: a plant defense hormone. Trends in Plant Science 25:549−65 doi: 10.1016/j.tplants.2020.01.004 |
[7] |
Sun J, Jiang H, Li C. 2011. Systemin/jasmonate-mediated systemic defense signaling in tomato. Molecular Plant 4:607−15 doi: 10.1093/mp/ssr008 |
[8] |
Glazebrook J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology 43:205−27 doi: 10.1146/annurev.phyto.43.040204.135923 |
[9] |
Thomma BPHJ, Eggermont K, Penninckx IAMA, Mauch-Mani B, Vogelsang R, et al. 1998. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proceedings of the National Academy of Sciences of the United States of America 95:15107−11 doi: 10.1073/pnas.95.25.1510 |
[10] |
Halitschke R, Baldwin IT. 2004. Jasmonates and related compounds in plant-insect interactions. Journal of Plant Growth Regulation 23:238−45 doi: 10.1007/s00344-004-0037-z |
[11] |
Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM. 2012. Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology 28:489−521 doi: 10.1146/annurev-cellbio-092910-154055 |
[12] |
Zeier J, Pink B, Mueller MJ, Berger S. 2004. Light conditions influence specific defence responses in incompatible plant-pathogen interactions: uncoupling systemic resistance from salicylic acid and PR-1 accumulation. Planta 219:673−83 doi: 10.1007/s00425-004-1272-z |
[13] |
Cheng MC, Kathare PK, Paik I, Huq E. 2021. Phytochrome signaling networks. Annual Review of Plant Biology 72:217−44 doi: 10.1146/annurev-arplant-080620-024221 |
[14] |
Li J, Li G, Wang H, Deng X. 2011. Phytochrome signaling mechanisms. The Arabidopsis Book 2011(9):0148 doi: 10.1199/tab.0148 |
[15] |
De Wit M, Spoel SH, Sanchez-Perez GF, Gommers CMM, Pieterse CMJ, et al. 2013. Perception of low red: far-red ratio compromises both salicylic acid- and jasmonic acid-dependent pathogen defences in Arabidopsis. The Plant Journal 75:90−103 doi: 10.1111/tpj.12203 |
[16] |
Griebel T, Zeier J. 2008. Light regulation and daytime dependency of inducible plant defenses in Arabidopsis: phytochrome signaling controls systemic acquired resistance rather than local defense. Plant Physiology 147:790−801 doi: 10.1104/pp.108.119503 |
[17] |
Wang F, Guo Z, Li H, Wang M, Onac E, et al. 2016. Phytochrome A and B function antagonistically to regulate cold tolerance via abscisic acid-dependent jasmonate signaling. Plant Physiology 170:459−71 doi: 10.1104/pp.15.01171 |
[18] |
Yang Y, Li Y, Guang Y, Lin J, Zhou Y, et al. 2023. Red light induces salicylic acid accumulation by activating CaHY5 to enhance pepper resistance against Phytophthora capsici. Horticulture Research 10:uhad213 doi: 10.1093/hr/uhad213 |
[19] |
Huai J, Gao N, Yao Y, Du Y, Guo Q, et al. 2024. JASMONATE ZIM-domain protein 3 regulates photomorphogenesis and thermomorphogenesis through inhibiting PIF4 in Arabidopsis. Plant Physiology 195:2274−88 doi: 10.1093/plphys/kiae143 |
[20] |
Tian T, Ma L, Liu Y, Xu D, Chen Q, et al. 2020. Arabidopsis FAR-RED ELONGATED HYPOCOTYL3 integrates age and light signals to negatively regulate leaf senescence. The Plant Cell 32:1574−88 doi: 10.1105/tpc.20.00021 |
[21] |
Li C, Du J, Xu H, Feng Z, Chater CCC, et al. 2024. UVR8-TCP4-LOX2 module regulates UV-B tolerance in Arabidopsis. Journal of Integrative Plant Biology 66:897−908 doi: 10.1111/jipb.13648 |
[22] |
Liu H, Li L, Fu X, Li Y, Chen T, et al. 2023. AaMYB108 is the core factor integrating light and jasmonic acid signaling to regulate artemisinin biosynthesis in Artemisia annua. New Phytologist 237:2224−37 doi: 10.1111/nph.18702 |
[23] |
Li S, Dong Y, Li D, Shi S, Zhao N, et al. 2024. Eggplant transcription factor SmMYB5 integrates jasmonate and light signaling during anthocyanin biosynthesis. Plant Physiology 194:1139−65 doi: 10.1093/plphys/kiad531 |
[24] |
Xu J, Guo Z, Jiang X, Ahammed GJ, Zhou Y. 2021. Light regulation of horticultural crop nutrient uptake and utilization. Horticultural Plant Journal 7:367−79 doi: 10.1016/j.hpj.2021.01.005 |
[25] |
Roeber VM, Bajaj I, Rohde M, Schmülling T, Cortleven A. 2021. Light acts as a stressor and influences abiotic and biotic stress responses in plants. Plant, Cell & Environment 44:645−64 doi: 10.1111/pce.13948 |
[26] |
Yudina L, Sukhova E, Gromova E, Mudrilov M, Zolin Y, et al. 2023. Effect of duration of LED lighting on growth, photosynthesis and respiration in Lettuce. Plants 12:442 doi: 10.3390/plants12030442 |
[27] |
Mackerness SAH, Surplus SL, Blake P, John CF, Buchanan-Wollaston V, et al. 1999. Ultraviolet-B-induced stress and changes in gene expression in Arabidopsis thaliana: role of signalling pathways controlled by jasmonic acid, ethylene and reactive oxygen species. Plant, Cell & Environment 22:1413−23 doi: 10.1046/j.1365-3040.1999.00499.x |
[28] |
Liu X, Rahman T, Song C, Su B, Yang F, et al. 2017. Changes in light environment, morphology, growth and yield of soybean in maize-soybean intercropping systems. Field Crops Research 200:38−46 doi: 10.1016/j.fcr.2016.10.003 |
[29] |
Yang F, Huang S, Gao RC, Liu WG, Yong TW, et al. 2014. Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red:far-red ratio. Field Crops Research 155:245−53 doi: 10.1016/j.fcr.2013.08.011 |
[30] |
Cui D, Li C, Sun Y, Wang J, Zou G, et al. 2022. Effects of dwarf close planting on growth and yield of tomato under east-west cultivation in greenhouse. Acta Horticulturae Sinica 49:875−84 doi: 10.16420/j.issn.0513-353x.2021-0070 |
[31] |
Robson F, Okamoto H, Patrick E, Harris SR, Wasternack C, et al. 2010. Jasmonate and phytochrome A signaling in Arabidopsis wound and shade responses are integrated through JAZ1 stability. The Plant Cell 22:1143−60 doi: 10.1105/tpc.109.067728 |
[32] |
Hou S, Tsuda K. 2022. Salicylic acid and jasmonic acid crosstalk in plant immunity. Essays in Biochemistry 66:647−56 doi: 10.1042/EBC20210090 |
[33] |
Vicente MRS, Plasencia J. 2011. Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany 62:3321−38 doi: 10.1093/jxb/err031 |
[34] |
Vlot AC, Dempsey DA, Klessig DF. 2009. Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology 47:177−206 doi: 10.1146/annurev.phyto.050908.135202 |
[35] |
Huot B, Yao J, Montgomery BL, He SY. 2014. Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Molecular Plant 7:1267−87 doi: 10.1093/mp/ssu049 |
[36] |
Mur LAJ, Kenton P, Atzorn R, Miersch O, Wasternack C. 2006. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiology 140:249−62 doi: 10.1104/pp.105.072348 |
[37] |
Moreno JE, Tao Y, Chory J, Ballaré CL. 2009. Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity. Proceedings of the National Academy of Sciences of the United States of America 106:4935−40 doi: 10.1073/pnas.0900701106 |
[38] |
Xiang S, Wu S, Jing Y, Chen L, Yu D. 2022. Phytochrome B regulates jasmonic acid-mediated defense response against Botrytis cinerea in Arabidopsis. Plant Diversity 44:109−15 doi: 10.1016/j.pld.2021.01.007 |
[39] |
Caputo C, Rutitzky M, Ballaré CL. 2006. Solar ultraviolet-B radiation alters the attractiveness of Arabidopsis plants to diamondback moths (Plutella xylostella L.): impacts on oviposition and involvement of the jasmonic acid pathway. Oecologia 149:81−90 doi: 10.1007/s00442-006-0422-3 |
[40] |
Shang J, Zhang S, Du J, Wang W, Li K, et al. 2023. Red and blue light induce soybean resistance to Soybean mosaic virus infection through the coordination of salicylic acid and jasmonic acid defense pathways. Viruses 15:2389 doi: 10.3390/v15122389 |
[41] |
Li X, Yang C, Chen J, He Y, Deng J, et al. 2021. Changing light promotes isoflavone biosynthesis in soybean pods and enhances their resistance to mildew infection. Plant, Cell & Environment 44:2536−50 doi: 10.1111/pce.14128 |
[42] |
Courbier S, Grevink S, Sluijs E, Bonhomme PO, Kajala K, et al. 2020. Far-red light promotes Botrytis cinerea disease development in tomato leaves via jasmonate-dependent modulation of soluble sugars. Plant, Cell & Environment 43:2769−81 doi: 10.1111/pce.13870 |
[43] |
Escobar-Bravo R, Ruijgrok J, Kim HK, Grosser K, Van Dam NM, et al. 2018. Light intensity-mediated induction of trichome-associated allelochemicals increases resistance against thrips in tomato. Plant and Cell Physiology 59:2462−75 doi: 10.1093/pcp/pcy166 |
[44] |
Mewis I, Schreiner M, Nguyen CN, Krumbein A, Ulrichs C, et al. 2012. UV-B irradiation changes specifically the secondary metabolite profile in broccoli sprouts: induced signaling overlaps with defense response to biotic stressors. Plant and Cell Physiology 53:1546−60 doi: 10.1093/pcp/pcs096 |
[45] |
Yang Y, Wu C, Ahammed GJ, Wu C, Yang Z, et al. 2018. Red light-induced systemic resistance against root-knot nematode is mediated by a coordinated regulation of salicylic acid, jasmonic acid and redox signaling in watermelon. Frontiers in Plant Science 9:899 doi: 10.3389/fpls.2018.00899 |
[46] |
Van Butselaar T, Van den Ackerveken G. 2020. Salicylic acid steers the growth-immunity tradeoff. Trends in Plant Science 25:566−76 doi: 10.1016/j.tplants.2020.02.002 |
[47] |
Wang L, Wu X, Xing Q, Zhao Y, Yu B, et al. 2023. PIF8-WRKY42-mediated salicylic acid synthesis modulates red light induced powdery mildew resistance in oriental melon. Plant, Cell & Environment 46:1726−42 doi: 10.1111/pce.14560 |
[48] |
Yang Y, Wang M, Yin Y, Onac E, Zhou G, et al. 2015. RNA-seq analysis reveals the role of red light in resistance against Pseudomonas syringae pv. tomato DC3000 in tomato plants. BMC Genomics 16:120 doi: 10.1186/s12864-015-1228-7 |
[49] |
Fragnière C, Serrano M, Abou-Mansour E, Métraux JP, L'Haridon F. 2011. Salicylic acid and its location in response to biotic and abiotic stress. FEBS Letters 585:1847−52 doi: 10.1016/j.febslet.2011.04.039 |
[50] |
Lajeunesse G, Roussin-Léveillée C, Boutin S, Fortin E, Laforest-Lapointe I, et al. 2023. Light prevents pathogen-induced aqueous microenvironments via potentiation of salicylic acid signaling. Nature Communications 14:713 doi: 10.1038/s41467-023-36382-7 |
[51] |
Gao Y, Wu Y, Du J, Zhan Y, Sun D, et al. 2017. Both light-induced SA accumulation and ETI mediators contribute to the cell death regulated by BAK1 and BKK1. Frontiers in Plant Science 8:622 doi: 10.3389/fpls.2017.00622 |
[52] |
Wang H, Jiang YP, Yu HJ, Xia XJ, Shi K, et al. 2010. Light quality affects incidence of powdery mildew, expression of defence-related genes and associated metabolism in cucumber plants. European Journal of Plant Pathology 127:125−35 doi: 10.1007/s10658-009-9577-1 |
[53] |
Li J, Deng X, Chen L, Fu F, Pu X, et al. 2015. Involvement of PHYB in resistance to Cucumber mosaic virus in Nicotiana tabacum. Plant Growth Regulation 77:33−42. doi: 10.1007/s10725-015-0032-3 |
[54] |
Chen LJ, Fei CY, Xu ZP, Wu G, Lin HH, et al. 2018. Positive role of phytochromes in Nicotiana tabacum against Cucumber mosaic virus via a salicylic acid-dependent pathway. Plant Pathology 67:488−98 doi: 10.1111/ppa.12731 |
[55] |
Nozue K, Devisetty UK, Lekkala S, Mueller-Moulé P, Bak A, et al. 2018. Network analysis reveals a role for salicylic acid pathway components in shade avoidance. Plant Physiology 178:1720−32 doi: 10.1104/pp.18.00920 |
[56] |
Genoud T, Buchala AJ, Chua NH, Métraux JP. 2002. Phytochrome signalling modulates the SA-perceptive pathway in Arabidopsis. The Plant Journal 31:87−95 doi: 10.1046/j.1365-313X.2002.01338.x |
[57] |
Cerrudo I, Keller MM, Cargnel MD, Demkura PV, de Wit M, et al. 2012. Low red/far-red ratios reduce arabidopsis resistance to Botrytis cinerea and jasmonate responses via a COI1-JAZ10-dependent, salicylic acid-independent mechanism. Plant Physiology 158:2042−52 doi: 10.1104/pp.112.193359 |
[58] |
Escobar-Bravo R, Chen G, Kim HK, Grosser K, van Dam NM, et al. 2019. Ultraviolet radiation exposure time and intensity modulate tomato resistance to herbivory through activation of jasmonic acid signaling. Journal of Experimental Botany 70:315−27 doi: 10.1093/jxb/ery347 |
[59] |
Zhou M, Wang W, Karapetyan S, Mwimba M, Marquées J, et al. 2015. Redox rhythm reinforces the circadian clock to gate immune response. Nature 523:472−76 doi: 10.1038/nature14449 |
[60] |
Zheng XY, Zhou M, Yoo H, Pruneda-Paz JL, Spivey NW, et al. 2015. Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid. Proceedings of the National Academy of Sciences of the United States of America 112:9166−73 doi: 10.1073/pnas.1511182112 |
[61] |
Bravo RE, Chen G, Grosser K, Van Dam NM, Leiss KA, et al. 2019. Ultraviolet radiation enhances salicylic acid-mediated defense signaling and resistance to Pseudomonas syringae DC3000 in a jasmonic acid-deficient tomato mutant. Plant Signaling & Behavior 14:e1581560 doi: 10.1080/15592324.2019.1581560 |
[62] |
Chico JM, Fernández-Barbero G, Chini A, Fernández-Calvo P, Díez-Díaz M, et al. 2014. Repression of jasmonate-dependent defenses by shade involves differential regulation of protein stability of MYC transcription factors and their JAZ repressors in Arabidopsis. The Plant Cell 26:1967−80 doi: 10.1105/tpc.114.125047 |
[63] |
Sun Y, Zheng Y, Yao H, Ma Z, Xiao M, et al. 2023. Light and jasmonic acid coordinately regulate the phosphate responses under shade and phosphate starvation conditions in Arabidopsis. Plant Direct 7:e504 doi: 10.1002/pld3.504 |
[64] |
Balfagón D, Sengupta S, Gómez-Cadenas A, Fritschi FB, Azad RK, et al. 2019. Jasmonic acid is required for plant acclimation to a combination of high light and heat stress. Plant Physiology 181:1668−82 doi: 10.1104/pp.19.00956 |
[65] |
Ahres M, Pálmai T, Kovács T, Kovács L, Lacek J, et al. 2023. The effect of white light spectrum modifications by excess of blue light on the frost tolerance, lipid- and hormone composition of barley in the early pre-hardening phase. Plants 12:40 doi: 10.3390/plants12010040 |
[66] |
Ahres M, Pálmai T, Gierczik K, Dobrev P, Vanková R, et al. 2021. The impact of far-red light supplementation on hormonal responses to cold acclimation in barley. Biomolecules 11:450 doi: 10.3390/biom11030450 |
[67] |
Zhang M, Zhang M, Wang J, Dai S, Zhang M, et al. 2023. Salicylic acid regulates two photosystem II protection pathways in tomato under chilling stress mediated by ETHYLENE INSENSITIVE 3-like proteins. The Plant Journal 114:1385−404 doi: 10.1111/tpj.16199 |
[68] |
Chen Y, Mao H, Wu N, Din AMU, Khan A, et al. 2020. Salicylic acid protects photosystem II by alleviating photoinhibition in Arabidopsis thaliana under high light. International Journal of Molecular Sciences 21:1229 doi: 10.3390/ijms21041229 |
[69] |
Radhika V, Kost C, Mithöfer A, Boland W. 2010. Regulation of extrafloral nectar secretion by jasmonates in lima bean is light dependent. Proceedings of the National Academy of Sciences of the United States of America 107:17228−33 doi: 10.1073/pnas.1009007107 |
[70] |
Jiang HW, Peng KC, Hsu TY, Chiou YC, Hsieh HL. 2023. Arabidopsis FIN219/JAR1 interacts with phytochrome A under far-red light and jasmonates in regulating hypocotyl elongation via a functional demand manner. PLoS Genetics 19:e1010779 doi: 10.1371/journal.pgen.1010779 |
[71] |
Hsieh HL, Okamoto H. 2014. Molecular interaction of jasmonate and phytochrome A signalling. Journal of Experimental Botany 65:2847−57 doi: 10.1093/jxb/eru230 |
[72] |
Hardtke CS, Gohda K, Osterlund MT, Oyama T, Okada K, et al. 2000. HY5 stability and activity in Arabidopsis is regulated by phosphorylation in its COP1 binding domain. The EMBO Journal 19:4997−5006 doi: 10.1093/emboj/19.18.4997 |
[73] |
Wang JG, Chen CH, Chien CT, Hsieh HL. 2011. FAR-RED INSENSITIVE219 modulates CONSTITUTIVE PHOTOMORPHOGENIC1 ctivity via physical interaction to regulate hypocotyl elongation in Arabidopsis. Plant Physiology 156:631−46 doi: 10.1104/pp.111.177667 |
[74] |
Ortigosa A, Fonseca S, Franco-Zorrilla JM, Fernández-Calvo P, Zander M, et al. 2020. The JA-pathway MYC transcription factors regulate photomorphogenic responses by targeting HY5 gene expression. The Plant Journal 102:138−52 doi: 10.1111/tpj.14618 |
[75] |
Chakraborty M, Gangappa SN, Maurya JP, Sethi V, Srivastava AK, et al. 2019. Functional interrelation of MYC2 and HY5 plays an important role in Arabidopsis seedling development. The Plant Journal 99:1080−97 doi: 10.1111/tpj.14381 |
[76] |
Zamora O, Schulze S, Azoulay-Shemer T, Parik H, Unt J, et al. 2021. Jasmonic acid and salicylic acid play minor roles in stomatal regulation by CO2, abscisic acid, darkness, vapor pressure deficit and ozone. The Plant Journal 108:134−50 doi: 10.1111/tpj.15430 |
[77] |
Takács Z, Poór P, Tari I. 2016. Comparison of polyamine metabolism in tomato plants exposed to different concentrations of salicylic acid under light or dark conditions. Plant Physiology and Biochemistry 108:266−78 doi: 10.1016/j.plaphy.2016.07.020 |
[78] |
Lihavainen J, Šimura J, Bag P, Fataftah N, Robinson KM, et al. 2023. Salicylic acid metabolism and signalling coordinate senescence initiation in aspen in nature. Nature Communications 14:4288 doi: 10.1038/s41467-023-39564-5 |
[79] |
Buchanan-Wollaston V, Page T, Harrison E, Breeze E, Lim PO, et al. 2005. Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. The Plant Journal 42:567−85 doi: 10.1111/j.1365-313X.2005.02399.x |
[80] |
Guo Y, Gong C, Cao B, Di T, Xu X, et al. 2023. Blue light enhances health-promoting sulforaphane accumulation in broccoli (Brassica oleracea var. italica) sprouts through inhibiting salicylic acid synthesis. Plants 12:3151 doi: 10.3390/plants12173151 |
[81] |
Ballaré CL. 2014. Light regulation of plant defense. Annual Review of Plant Biology 65:335−63 doi: 10.1146/annurev-arplant-050213-040145 |
[82] |
Pierik R, Ballaré CL. 2021. Control of plant growth and defense by photoreceptors: from mechanisms to opportunities in agriculture. Molecular Plant 14:61−76 doi: 10.1016/j.molp.2020.11.021 |
[83] |
Gautam JK, Giri MK, Singh D, Chattopadhyay S, Nandi AK. 2021. MYC2 influences salicylic acid biosynthesis and defense against bacterial pathogens in Arabidopsis thaliana. Physiologia Plantarum 173:2248−61 doi: 10.1111/ppl.13575 |
[84] |
Fernández-Milmanda GL, Ballaré CL. 2021. Shade avoidance: expanding the color and hormone palette. Trends in Plant Science 26:509−23 doi: 10.1016/j.tplants.2020.12.006 |
[85] |
Fernández-Milmanda GL, Crocco CD, Reichelt M, Mazza CA, KöllnerTG, et al. 2020. A light-dependent molecular link between competition cues and defence responses in plants. Nature Plants 6:223−30 doi: 10.1038/s41477-020-0604-8 |
[86] |
Hou S, Thiergart T, Vannier N, Mesny F, Ziegler J, et al. 2021. A microbiota-root-shoot circuit favours Arabidopsis growth over defence under suboptimal light. Nature Plants 7:1078−92 doi: 10.1038/s41477-021-00956-4 |
[87] |
Leone M, Keller MM, Cerrudo I, Ballaré CL. 2014. To grow or defend? Low red : far-red ratios reduce jasmonate sensitivity in Arabidopsis seedlings by promoting DELLA degradation and increasing JAZ10 stability. New Phytologist 204:355−67 doi: 10.1111/nph.12971 |
[88] |
Yang D, Yao J, Mei C, Tong X, Zeng L, et al. 2012. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proceedings of the National Academy of Sciences of the United States of America 109:E1192−E1200 doi: 10.1073/pnas.1201616109 |
[89] |
He Z, Webster S, He S. 2022. Growth-defense trade-offs in plants. Current Biology 32:R634−R639 doi: 10.1016/j.cub.2022.04.070 |
[90] |
Liu X, Jiang W, Li Y, Nie H, Cui L, et al. 2023. FERONIA coordinates plant growth and salt tolerance via the phosphorylation of phyB. Nature Plants 9:645−60 doi: 10.1038/s41477-023-01390-4 |
[91] |
Zhao Y, Shi H, Pan Y, Lyu M, Yang Z, et al. 2023. Sensory circuitry controls cytosolic calcium-mediated phytochrome B phototransduction. Cell 186:1230−1243.E14 doi: 10.1016/j.cell.2023.02.011 |
[92] |
Yang Z, Zhang H, Li X, Shen H, Gao J, et al. 2020. A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nature Plants 6:1167−78 doi: 10.1038/s41477-020-0747-7 |
[93] |
Shan Q, Wang Y, Li J, Zhang Y, Chen K, et al. 2013. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology 31:686−88 doi: 10.1038/nbt.2650 |
[94] |
Ahmad S, Tang LQ, Shahzad R, Mawia AM, Rao GS, et al. 2021. CRISPR-based crop improvements: a way forward to achieve zero hunger. Journal of Agricultural and Food Chemistry 69:8307−23 doi: 10.1021/acs.jafc.1c02653 |
[95] |
Zhao P, Zhang X, Gong Y, Wang D, Xu D, et al. 2021. Red-light is an environmental effector for mutualism between begomovirus and its vector whitefly. PLoS Pathogens 17:e1008770 doi: 10.1371/journal.ppat.1008770 |
[96] |
Koo YM, Heo AY, Choi HW. 2020. Salicylic acid as a safe plant protector and growth regulator. Plant Pathology Journal 36:1−10 doi: 10.5423/PPJ.RW.12.2019.0295 |