[1] |
Tang GY, Meng X, Gan RY, Zhao CN, Liu Q, et al. 2019. Health functions and related molecular mechanisms of tea components: an update review. International Journal of Molecular Sciences 20(24):6196 doi: 10.3390/ijms20246196 |
[2] |
Cai M, Huang L, Dong S, Diao N, Ye W, et al. 2023. Enhancing the flavor profile of summer green tea via fermentation with Aspergillus niger RAF106. Foods 12(18):3420 doi: 10.3390/foods12183420 |
[3] |
Wen L, Sun L, Chen R, Li Q, Lai X, et al. 2023. Metabolome and microbiome analysis to study the flavor of summer black tea improved by stuck fermentation. Foods 12(18):3414 doi: 10.3390/foods12183414 |
[4] |
Wong M, Sirisena S, Ng K. 2022. Phytochemical profile of differently processed tea: A review. Journal of Food Science 87(5):1925−42 doi: 10.1111/1750-3841.16137 |
[5] |
Kim J, Adhikari K. 2020. Current trends in Kombucha: marketing perspectives and the need for improved sensory research. Beverages 6:15 doi: 10.3390/beverages6010015 |
[6] |
Hu T, Shi S, Ma Q. 2022. Modulation effects of microorganisms on tea in fermentation. Frontiers in Nutrition 9:931790 doi: 10.3389/fnut.2022.931790 |
[7] |
Costa, MAdC, Vilela DLdS, Fraiz GM, Lopes IL, Coelho AIM, et al. 2023. Effect of kombucha intake on the gut microbiota and obesity-related comorbidities: A systematic review. Critical Reviews in Food Science and Nutrition 63(19):3851−66 doi: 10.1080/10408398.2021.1995321 |
[8] |
Barakat N, Beaufort S, Rizk Z, Bouajila J, Taillandier P, et al. 2023. Kombucha analogues around the world: A review. Critical Reviews in Food Science and Nutrition 63(29):10105−29 doi: 10.1080/10408398.2022.2069673 |
[9] |
Pradhan S, Prabhakar MR, Karthika Parvathy KR, Dey B, Jayaraman S, et al. 2023. Metagenomic and physicochemical analysis of Kombucha beverage produced from tea waste. Journal of Food Science and Technology 60(3):1088−96 doi: 10.1007/s13197-022-05476-3 |
[10] |
Wang B, Rutherfurd-Markwick K, Zhang XX, Mutukumira AN. 2022. Isolation and characterisation of dominant acetic acid bacteria and yeast isolated from Kombucha samples at point of sale in New Zealand. Current Research in Food Science 5:835−44 doi: 10.1016/j.crfs.2022.04.013 |
[11] |
Brewer SS, Lowe CA, Beuchat LR, Ortega YR. 2021. Survival of Salmonella and Shiga toxin-producing Escherichia coli and changes in indigenous microbiota during fermentation of kombucha made from home-brewing kits. Journal of Food Protection 84:1366−73 doi: 10.4315/JFP-20-483 |
[12] |
Nurten A, Sezer SDF, Erdogan OI. 2022. Kombucha – An ancient fermented beverage with desired bioactivities: A narrowed review. Food Chemistry: X 14:100302 doi: 10.1016/j.fochx.2022.100302 |
[13] |
Emiljanowicz KE, Malinowska-Pańczyk E. 2020. Kombucha from alternative raw materials – the review. Critical Reviews in Food Science and Nutrition 60:3185−94 doi: 10.1080/10408398.2019.1679714 |
[14] |
Laureys D, Britton SJ, De Clippeleer J. 2020. Kombucha tea fermentation: a review. Journal of the American Society of Brewing Chemists 78:165−74 doi: 10.1080/03610470.2020.1734150 |
[15] |
Chen L. 2017. The research and development of the tea deep processing products from the tea in summer and autumn. Thesis. Guizhou University, China. |
[16] |
Zhao H, Zhao L, Bai L. 2021. Development and research progress of tea vinegar . China Condiment 46(10):114−16 doi: 10.3969/j.issn.1000-9973.2021.10.021 |
[17] |
Morales D. 2020. Biological activities of kombucha beverages: The need of clinical evidence. Trends in Food Science & Technology 105:323−33 doi: 10.1016/j.jpgs.2020.09.025 |
[18] |
Wang B, Rutherfurd-Markwick K, Zhang XX, Mutukumira AN. 2022. Kombucha: production and microbiological research. Foods 11(21):3456 doi: 10.3390/foods11213456 |
[19] |
Wang R, Sun J, Lassabliere B, Yu B, Liu SQ. 2020. Biotransformation of green tea (Camellia sinensis) by wine yeast Saccharomyces cerevisiae. Journal of Food Science 85(2):306−15 doi: 10.1111/1750-3841.15026 |
[20] |
Kaashyap M, Cohen M, Mantri N. 2021. Microbial diversity and characteristics of Kombucha as revealed by metagenomic and physicochemical analysis. Nutrients 13(12):4446 doi: 10.3390/nu13124446 |
[21] |
Kaur P, Kocher GS, Phutela RP. 2011. Production of tea vinegar by batch and semicontinuous fermentation. Journal of Food Science and Technology 48(6):755−58 doi: 10.1007/s13197-010-0143-9 |
[22] |
Chen C, Wu S, Li Y, Huang Y, Yang X. 2022. Effects of different acetic acid bacteria strains on the bioactive compounds, volatile compounds and antioxidant activity of black tea vinegar. LWT 171:114131 doi: 10.1016/j.lwt.2022.114131 |
[23] |
Lynch KM, Zannini E, Wilkinson S, Daenen L, Arendt EK. 2019. Physiology of acetic acid bacteria and their role in vinegar and fermented beverages. Comprehensive Reviews in Food Science and Food Safety 18(3):587−25 doi: 10.1111/1541-4337.12440 |
[24] |
Neffe-Skocińska K, Karbowiak M, Kruk M, Kołożyn-Krajewska D, Zielińska D. 2023. Polyphenol and antioxidant properties of food obtained by the activity of acetic acid bacteria (AAB) – A systematic review. Journal of Functional Foods 107:105691 doi: 10.1016/j.jff.2023.105691 |
[25] |
Fuller GG, Kim JK. 2021. Compartmentalization and metabolic regulation of glycolysis. Journal of Cell Science 134(20):258469 doi: 10.1242/jcs.258469 |
[26] |
Judge A, Dodd MS. 2020. Metabolism. Essays in Biochemistry 64:607−47 doi: 10.1042/EBC20190041 |
[27] |
Khoi Nguyen N, Thuy Nguyen H, Le PH. 2015. Effects of Lactobacillus casei and alterations in fermentation conditions on biosynthesis of glucuronic acid by a Dekkera bruxellensis-gluco nacetobacter intermedius kombucha symbiosis model system. Food Biotechnology 29:356−70 doi: 10.1080/08905436.2015.1092446 |
[28] |
Jakubczyk K, Kupnicka P, Melkis K, Mielczarek O, Walczyńska J, et al. 2022. Effects of fermentation time and type of tea on the content of micronutrients in kombucha fermented tea. Nutrients 14(22):4828 doi: 10.3390/nu14224828 |
[29] |
Jakubczyk K, Kałduńska J, Kochman J, Janda K. 2020. Chemical profile and antioxidant activity of the kombucha beverage derived from white, green, black and red tea. Antioxidants 9(5):447 doi: 10.3390/antiox9050447 |
[30] |
Cardoso RR, Neto RO, Dos Santos D’Almeida CT, do Nascimento TP, Pressete CG, et al. 2020. Kombuchas from green and black teas have different phenolic profile, which impacts their antioxidant capacities, antibacterial and antiproliferative activities. Food Research International 128:108782 doi: 10.1016/j.foodres.2019.108782 |
[31] |
Zou C, Chen DQ, He HF, Huang YB, Feng ZH, et a. 2023. Impact of tea leaves categories on physicochemical, antioxidant, and sensorial profiles of tea wine. Frontiers in Nutrition 10:1110803 doi: 10.3389/fnut.2023.1110803 |
[32] |
Zou C, Xu Y, Chen J, Li R, Wang F, et al. 2021. Fermentation process optimization and chemical composition analysis on black tea wine. E3S Web of Conferences 233:02052 doi: 10.1051/e3sconf/202123302052 |
[33] |
Gaggìa F, Baffoni L, Galiano M, Nielsen DS, Jakobsen RR, et al. 2018. Kombucha Beverage from Green, Black and Rooibos Teas: A Comparative Study Looking at Microbiology, Chemistry and Antioxidant Activity. Nutrients 11(1):1 doi: 10.3390/nu11010001 |
[34] |
Ivanišová E, Meňhartová K, Terentjeva M, Harangozo Ľ, Kántor A, et al. 2020. The evaluation of chemical, antioxidant, antimicrobial and sensory properties of kombucha tea beverage. Journal of Food Science and Technology 57(5):1840−46 doi: 10.1007/s13197-019-04217-3 |
[35] |
Kaewkod T, Bovonsombut S, Tragoolpua Y. 2019. Efficacy of kombucha obtained from green, oolong, and black teas on inhibition of pathogenic bacteria, antioxidation, and toxicity on colorectal cancer cell line. Microorganisms 7(12):700 doi: 10.3390/microorganisms7120700 |
[36] |
Wang R, Jiang X, Chen L, Zhu J. 2019. Fermentation Kinetics of Tea Wine. Food Research And Development 40(15):91−96 doi: 10.12161/j.issn.1005-6521.2019.15.015 |
[37] |
Yu J, Lyu Y. 2021. Process of low-caffeine tea liquor and determination of its volatile components. Food Science and Technology 46(4):75−81 |
[38] |
Chen J, Lin B, Zheng FJ, Fang XC, Ren EF, et al. 2023. Characterization of the pure black tea wine fermentation process by electronic nose and tongue-based techniques with nutritional characteristics. ACS Omega 8:12538−47 doi: 10.1021/acsomega.3c00862 |
[39] |
Li Y, Zhang S, Sun Y. 2020. Measurement of catechin and gallic acid in tea wine with HPLC. Saudi Journal of Biological Sciences 27:214−21 doi: 10.1016/j.sjbs.2019.08.011 |
[40] |
Chen Y, Bai Y, Li D, Wang C, Xu N, et al. 2016. Correlation between ethanol resistance and characteristics of PQQ-dependent ADH in acetic acid bacteria. European Food Research and Technology 242:837−47 doi: 10.1007/s00217-015-2589-5 |
[41] |
Tran T, Grandvalet C, Verdier F, Martin A, Alexandre H, et al. 2020. Microbial dynamics between yeasts and acetic acid bacteria in kombucha: impacts on the chemical composition of the beverage. Foods 9:963 doi: 10.3390/foods9070963 |
[42] |
Chan M, Sy H, Finley J, Robertson J, Brown PN. 2021. Determination of ethanol content in kombucha using headspace gas chromatography with mass spectrometry detection: single-laboratory validation. Journal of AOAC International 104:122−28 doi: 10.1093/jaoacint/qsaa094 |
[43] |
Mekoue Nguela J, Teuf O, Assuncao Bicca S, Vernhet A. 2023. Impact of mannoprotein N-glycosyl phosphorylation and branching on the sorption of wine polyphenols by yeasts and yeast cell walls. Food Chemistry 403:134326 doi: 10.1016/j.foodchem.2022.134326 |
[44] |
Cheng L, Zhang X, Zheng X, Wu Z, Weng P. 2019. RNA-seq transcriptomic analysis of green tea polyphenols regulation of differently expressed genes in Saccharomyces cerevisiae under ethanol stress. World Journal of Microbiology and Biotechnology 35:59 doi: 10.1007/s11274-019-2639-4 |
[45] |
Xiao T, Khan A, Shen Y, Chen L, Rabinowitz JD. 2022. Glucose feeds the tricarboxylic acid cycle via excreted ethanol in fermenting yeast. Nature Chemical Biology 18:1380−87 doi: 10.1038/s41589-022-01091-7 |
[46] |
Xia Y, Wang X, Sun H, Huang X. 2021. Proton-coupled electron transfer of catechin in tea wine: the enhanced mechanism of anti-oxidative capacity. RSC Advances 11:39985−93 doi: 10.1039/D1RA07769D |
[47] |
Değirmencioğlu N, Yıldız E, Sahan Y, Güldas M, Gürbüz O. 2021. Impact of tea leaves types on antioxidant properties and bioaccessibility of kombucha. Journal of Food Science and Technology 58:2304−12 doi: 10.1007/s13197-020-04741-7 |
[48] |
Ivanišová E, Meňhartová K, Terentjeva M, Godočíková L, Árvay J, et al. 2019. Kombucha tea beverage: Microbiological characteristic, antioxidant activity, and phytochemical composition. Acta Alimentaria 48:324−31 doi: 10.1556/066.2019.48.3.7 |
[49] |
de Noronha MC, Cardoso RR, Dos Santos D’Almeida CT, Vieira do Carmo MA, Azevedo L, et al. 2022. Black tea kombucha: Physicochemical, microbiological and comprehensive phenolic profile changes during fermentation, and antimalarial activity. Food Chemistry 384:132515 doi: 10.1016/j.foodchem.2022.132515 |
[50] |
Villarreal-Soto SA, Beaufort S, Bouajila J, Souchard JP, Renard T, et al. 2019. Impact of fermentation conditions on the production of bioactive compounds with anticancer, anti-inflammatory and antioxidant properties in kombucha tea extracts. Process Biochemistry 83:44−54 doi: 10.1016/j.procbio.2019.05.004 |
[51] |
Tran T, Romanet R, Roullier-Gall C, Verdier F, Martin A, et al. 2022. Non-Targeted Metabolomic Analysis of the Kombucha Production Process. Metabolites 12:160 doi: 10.3390/metabo12020160 |
[52] |
Zhao ZJ, Sui YC, Wu HW, Zhou CB, Hu XC, et al. 2018. Flavour chemical dynamics during fermentation of kombucha tea. Emirates Journal of Food and Agriculture 30(9):732−41 doi: 10.9755/ejfa.2018.v30.i9.1794 |
[53] |
Xu W, Wang X, Jia W, Wen B, Liao S, et al. 2023. Dynamic changes in the major chemical and volatile components during the "Ziyan" tea wine processing. LWT 186:115273 doi: 10.1016/j.lwt.2023.115273 |
[54] |
Zhu YF, Chen JJ, Ji XM, Hu X, Ling TJ, et al. 2015. Changes of major tea polyphenols and production of four new B-ring fission metabolites of catechins from post-fermented Jing-Wei Fu brick tea. Food Chemistry 170:110−17 doi: 10.1016/j.foodchem.2014.08.075 |
[55] |
Quan X. 2013. Study on the technology of tea vinegar beverage fermented by summer and autumn tea leaves Thesis. Huazhong Agricultural University, China. |
[56] |
Shi S, Wei Y, Lin X, Liang H, Zhang S, et al. 2023. Microbial metabolic transformation and antioxidant activity evaluation of polyphenols in kombucha. Food Bioscience 51:102287 doi: 10.1016/j.fbio.2022.102287 |
[57] |
Villarreal-Soto SA, Bouajila J, Pace M, Leech J, Cotter PD, et al. 2020. Metabolome-microbiome signatures in the fermented beverage, Kombucha. International Journal of Food Microbiology 333:108778 doi: 10.1016/j.ijfoodmicro.2020.108778 |
[58] |
Leonard W, Zhang P, Ying D, Adhikari B, Fang Z. 2021. Fermentation transforms the phenolic profiles and bioactivities of plant-based foods. Biotechnology Advances 49:107763 doi: 10.1016/j.biotechadv.2021.107763 |
[59] |
Chen R, Gao J, Yu W, Chen X, Zhai X, et al. 2022. Engineering cofactor supply and recycling to drive phenolic acid biosynthesis in yeast. Nature Chemical Biology 18:520−29 doi: 10.1038/s41589-022-01014-6 |
[60] |
Macedo Dantas Coelho R, de Almeida AL, do Amaral RQG, da Mota RN, de Sousa PHM. 2020. Kombucha: Review. International Journal of Gastronomy and Food Science 22:100272 doi: 10.1016/j.ijgfs.2020.100272 |
[61] |
Aleksandra V, Dragoljub C, Sinisa M. 2013. Characteristics of Kombucha fermentation on medicinal herbs from Lamiaceae family. Romanian Biotechnological Letters 18:8034−42 |
[62] |
Lin Z, Wei J, Hu Y, Pi D, Jiang M, et al. 2023. Caffeine Synthesis and Its Mechanism and Application by Microbial Degradation, A Review. Foods 12:2721 doi: 10.3390/foods12142721 |
[63] |
Gummadi SN, Bhavya B, Ashok N. 2012. Physiology, biochemistry and possible applications of microbial caffeine degradation. Applied Microbiology and Biotechnology 93:545−54 doi: 10.1007/s00253-011-3737-x |
[64] |
Parvin R, Bhattacharya S, Chaudhury SS, Roy U, Mukherjee J, et al. 2023. Production, purification and characterization of a novel thermostable caffeine dehydrogenase from Pichia manshurica strain CD1 isolated from kombucha tea. Microbiology 92:230−41 doi: 10.1134/S0026261722601476 |
[65] |
Chakravorty S, Bhattacharya S, Chatzinotas A, Chakraborty W, Bhattacharya D, et al. 2016. Kombucha tea fermentation: Microbial and biochemical dynamics. International Journal of Food Microbiology 220:63−72 doi: 10.1016/j.ijfoodmicro.2015.12.015 |
[66] |
Pérez-López AJ, Saura D, Lorente J, Carbonell-Barrachina ÁA. 2006. Limonene, linalool, α-terpineol, and terpinen-4-ol as quality control parameters in mandarin juice processing. European Food Research and Technology 222:281−85 doi: 10.1007/s00217-005-0055-5 |
[67] |
Wang Z, Ahmad W, Zhu A, Geng W, Kang W, et al. 2023. Identification of volatile compounds and metabolic pathway during ultrasound-assisted kombucha fermentation by HS-SPME-GC/MS combined with metabolomic analysis. Ultrasonics Sonochemistry 94:106339 doi: 10.1016/j.ultsonch.2023.106339 |
[68] |
Meng Y, Wang X, Li Y, Chen J, Chen X. 2024. Microbial interactions and dynamic changes of volatile flavor compounds during the fermentation of traditional kombucha. Food Chemistry 430:137060 doi: 10.1016/j.foodchem.2023.137060 |
[69] |
Dartora B, Hickert LR, Fabricio MF, Ayub MAZ, Furlan JM, et al. 2023. Understanding the effect of fermentation time on physicochemical characteristics, sensory attributes, and volatile compounds in green tea kombucha. Food Research International 174:113569 doi: 10.1016/j.foodres.2023.113569 |
[70] |
Suffys S, Richard G, Burgeon C, Werrie PY, Haubruge E, et al. 2023. Characterization of aroma active compound production during kombucha fermentation: towards the control of sensory profiles. Foods 12:1657 doi: 10.3390/foods12081657 |
[71] |
Phung LT, Kitwetcharoen H, Chamnipa N, Boonchot N, Thanonkeo S, et al. 2023. Changes in the chemical compositions and biological properties of kombucha beverages made from black teas and pineapple peels and cores. Scientific Reports 13:7859 doi: 10.1038/s41598-023-34954-7 |
[72] |
Meng Y, Chen L, Lu H, An J, Zhang Z. 2020. Analysis of amino acid components and volatile components of tea vinegar made from meitan summer and autumn tea in Guizhou Province. China Condiment 45:176−81 doi: 10.3969/j.issn.1000-9973.2020.05.034 |
[73] |
Kumar V, Joshi VK, Thakur NS, Kumar S, Gupta RK, et al. 2022. Bioprocess optimization for production of apple tea wine: influence of different variables on the quality attributes. Journal of Food Measurement and Characterization 16:1528−39 doi: 10.1007/s11694-021-01262-5 |
[74] |
Hirst MB, Richter CL. 2016. Review of Aroma Formation through Metabolic Pathways of Saccharomyces cerevisiae in Beverage Fermentations. American Journal of Enology and Viticulture 67:4 doi: 10.5344/ajev.2016.15098 |
[75] |
Li SY, Ng IS, Chen PT, Chiang CJ, Chao YP. 2018. Biorefining of protein waste for production of sustainable fuels and chemicals. Biotechnology for Biofuels 11:256 doi: 10.1186/s13068-018-1234-5 |
[76] |
van Wyk N, Binder J, Ludszuweit M, Köhler S, Brezina S, et a. 2023. The influence of Pichia kluyveri addition on the aroma profile of a kombucha tea fermentation. Foods 12:1938 doi: 10.3390/foods12101938 |
[77] |
Sumby KM, Grbin PR, Jiranek V. 2010. Microbial modulation of aromatic esters in wine: Current knowledge and future prospects. Food Chemistry 121:1−16 doi: 10.1016/j.foodchem.2009.12.004 |
[78] |
Huang X, Xin Y, Lu T. 2022. A systematic, complexity-reduction approach to dissect the kombucha tea microbiome. eLife 11:76401 doi: 10.7554/eLife.76401 |
[79] |
Cubas ALV, Provin AP, Dutra ARA, Mouro C, Gouveia IC. 2023. Advances in the production of biomaterials through kombucha using food waste: concepts, challenges, and potential. Polymers 15:1701 doi: 10.3390/polym15071701 |
[80] |
Avcioglu NH, Birben M, Seyis Bilkay I. 2021. Optimization and physicochemical characterization of enhanced microbial cellulose production with a new Kombucha consortium. Process Biochemistry 108:60−68 doi: 10.1016/j.procbio.2021.06.005 |
[81] |
Aung T, Kim MJ. 2024. A comprehensive review on kombucha biofilms: A promising candidate for sustainable food product development. Trends in Food Science & Technology 144:104325 doi: 10.1016/j.jpgs.2024.104325 |
[82] |
El-Shall FN, Al-Shemy MT, Dawwam GE. 2023. Multifunction smart nanocomposite film for food packaging based on carboxymethyl cellulose/Kombucha SCOBY/pomegranate anthocyanin pigment. International Journal of Biological Macromolecules 242:125101 doi: 10.1016/j.ijbiomac.2023.125101 |
[83] |
Brugnoli M, Robotti F, La China S, Anguluri K, Haghighi H, et al. 2021. Assessing effectiveness of Komagataeibacter strains for producing surface-microstructured cellulose via guided assembly-based biolithography. Scientific Reports 11:19311 doi: 10.1038/s41598-021-98705-2 |
[84] |
Landis EA, Fogarty E, Edwards JC, Popa O, Eren AM, et al. 2022. Microbial Diversity and Interaction Specificity in Kombucha Tea Fermentations. mSystems 7:00157−2 doi: 10.1128/msystems.00157-22 |
[85] |
Gilbert C, Tang TC, Ott W, Dorr BA, Shaw WM, et al. 2021. Living materials with programmable functionalities grown from engineered microbial co-cultures. Nature Materials 20:691−700 doi: 10.1038/s41563-020-00857-5 |
[86] |
Valera MJ, Torija MJ, Mas A, Mateo E. 2015. Cellulose production and cellulose synthase gene detection in acetic acid bacteria. Applied Microbiology and Biotechnology 99:1349−61 doi: 10.1007/s00253-014-6198-1 |
[87] |
Villarreal-Soto SA, Beaufort S, Bouajila J, Souchard JP, Taillandier P. 2018. Understanding kombucha tea fermentation: a review. Journal of Food Science 83:580−88 doi: 10.1111/1750-3841.14068 |
[88] |
Yim SM, Song JE, Kim HR. 2017. Production and characterization of bacterial cellulose fabrics by nitrogen sources of tea and carbon sources of sugar. Process Biochemistry 59:26−36 doi: 10.1016/j.procbio.2016.07.001 |
[89] |
Ramírez Tapias YA, Di Monte MV, Peltzer MA, Salvay AG. 2022. Bacterial cellulose films production by Kombucha symbiotic community cultured on different herbal infusions. Food Chemistry 372:131346−46 doi: 10.1016/j.foodchem.2021.131346 |
[90] |
Ramírez Tapias YA, Peltzer MA, Delgado JF, Salvay AG. 2020. Kombucha tea by-product as source of novel materials: formulation and characterization of films. Food and Bioprocess Technology 13:1166−80 doi: 10.1007/s11947-020-02471-4 |
[91] |
Stefanowska K, Woźniak M, Majka J, Sip A, Mrówczyńska L, et al. 2023. A new approach to obtain chitosan films – Characteristics of films prepared with tea and coffee kombucha as natural chitosan solvents. Industrial Crops and Products 197:116634 doi: 10.1016/j.indcrop.2023.116634 |
[92] |
Atkinson FS, Cohen M, Lau K, Brand-Miller JC. 2023. Glycemic index and insulin index after a standard carbohydrate meal consumed with live kombucha: A randomised, placebo-controlled, crossover trial. Frontiers in Nutrition 10:1036717 doi: 10.3389/fnut.2023.1036717 |
[93] |
Costa MAdC, Dias Moreira LdP, Duarte VdS, Cardoso RR, São José VPBd, et al. 2022. Kombuchas from green and black tea modulate the gut microbiota and improve the intestinal health of wistar rats fed a high-fat high-fructose diet. Nutrients 14:5234 doi: 10.3390/nu14245234 |
[94] |
Cardoso RR, Moreira LPD, de Campos Costa MA, Toledo RCL, Grancieri M, et all. 2021. Kombuchas from green and black teas reduce oxidative stress, liver steatosis and inflammation, and improve glucose metabolism in Wistar rats fed a high-fat high-fructose diet. Food & Function 12:10813−27 doi: 10.1039/d1fo02106k |
[95] |
Wang P, Feng Z, Sang X, Chen W, Zhang X, et al. 2021. Kombucha ameliorates LPS-induced sepsis in a mouse model. Food & function 12:10263−80 doi: 10.1039/d1fo01839f |
[96] |
Xu S, Wang Y, Wang J, Geng W. 2022. Kombucha reduces hyperglycemia in type 2 diabetes of mice by regulating gut microbiota and its metabolites. Foods 11:754 doi: 10.3390/foods11050754 |
[97] |
Jung Y, Kim I, Mannaa M, Kim J, Wang S, et al. 2019. Effect of Kombucha on gut-microbiota in mouse having non-alcoholic fatty liver disease. Food Science and Biotechnology 28:261−67 doi: 10.1007/s10068-018-0433-y |
[98] |
Moreira GV, Araujo LCC, Murata GM, Matos SL, Carvalho CRO. 2022. Kombucha tea improves glucose tolerance and reduces hepatic steatosis in obese mice. Biomedicine & Pharmacotherapy 155:113660 doi: 10.1016/j.biopha.2022.113660 |
[99] |
Pakravan N, Kermanian F, Mahmoudi E. 2019. Filtered Kombucha tea ameliorates the leaky gut syndrome in young and old mice model of colitis. Iranian Journal of Basic Medical Sciences 22:1158−65 doi: 10.22038/ijbms.2019.36189.8622 |
[100] |
Teixeira Oliveira J, Machado da Costa F, Gonçalvez da Silva T, Dotto Simões G, Dos Santos Pereira E, et al. 2023. Green tea and kombucha characterization: Phenolic composition, antioxidant capacity and enzymatic inhibition potential. Food Chemistry 408:135206 doi: 10.1016/j.foodchem.2022.135206 |
[101] |
An J. 2019. Study on the fermentation technology and function of tea vinegar. Thesis. Guizhou University, China. |
[102] |
Bhattacharya D, Bhattacharya S, Patra MM, Chakravorty S, Sarkar S, et al. 2016. Antibacterial activity of polyphenolic fraction of kombucha against enteric bacterial pathogens. Current Microbiology 73:885−96 doi: 10.1007/s00284-016-1136-3 |