[1]

Ivushkin K, Bartholomeus H, Bregt AK, Pulatov A, Kempen B, et al. 2019. Global mapping of soil salinity change. Remote Sensing of Environment 231:111260

doi: 10.1016/j.rse.2019.111260
[2]

Mishra AK, Das R, George Kerry R, Biswal B, Sinha T, et al. 2023. Promising management strategies to improve crop sustainability and to amend soil salinity. Frontiers in Environmental Science 10:962581

doi: 10.3389/fenvs.2022.962581
[3]

Endo T, Yamamoto S, Larrinaga JA, Fujiyama H, Honna T. 2011. Status and causes of soil salinization of irrigated agricultural lands in Southern Baja California, Mexico. Applied and Environmental Soil Science

doi: 10.1155/2011/873625
[4]

Munns R, Gilliham M. 2015. Salinity tolerance of crops – what is the cost? New Phytologist 208:668−73

doi: 10.1111/nph.13519
[5]

Sharma A, Rana C, Singh S, Katoch V. 2016. Soil salinity: causes, effects, and management in cucurbits. In Handbook of Cucurbits, ed. Pessarakli M. Boca Raton: CRC Press. https://doi.org/10.1201/b19233-42

[6]

Waqas M, Chen Y, Desneux N. 2024. Pesticide reduction: clustering organic croplands. Trends in Ecology & Evolution 39:512−14

doi: 10.1016/j.tree.2024.04.011
[7]

Waqas M, Hawkesford MJ, Geilfus CM. 2023. Feeding the world sustainably: efficient nitrogen use. Trends in Plant Science 28:505−08

doi: 10.1016/j.tplants.2023.02.010
[8]

Butcher K, Wick AF, DeSutter T, Chatterjee A, Harmon J. 2016. Soil salinity: a threat to global food security. Agronomy Journal 108:2189−200

doi: 10.2134/agronj2016.06.0368
[9]

Corwin DL, Scudiero E. 2019. Review of soil salinity assessment for agriculture across multiple scales using proximal and/or remote sensors. Advances in Agronomy 158:1−130

doi: 10.1016/bs.agron.2019.07.001
[10]

Waqas M, Chen Y, Iqbal H, Shareef M, ur Rehman H, et al. 2021. Synergistic consequences of salinity and potassium deficiency in quinoa: linking with stomatal patterning, ionic relations and oxidative metabolism. Plant Physiology and Biochemistry 159:17−27

doi: 10.1016/j.plaphy.2020.11.043
[11]

Waqas M, Yaning C, Iqbal H, Shareef M, ur Rehman H, et al. 2019. Soil drenching of paclobutrazol: an efficient way to improve quinoa performance under salinity. Physiologia Plantarum 165:219−31

doi: 10.1111/ppl.12820
[12]

Li B, Zhang S, Lv Y, Wei S, Hu Y. 2022. Reactive oxygen species-induced protein carbonylation promotes deterioration of physiological activity of wheat seeds. PLoS One 17:e0263553

doi: 10.1371/journal.pone.0263553
[13]

Devi S, Talwar H, Ramprakash VG, Goyal M, Kumar N. 2018. Physiological variability of sorghum (Sorghum bicolour L. Moench) under salt stress. Forage Research 44:101−04

[14]

Venkateswaran K, Elangovan M, Sivaraj N. 2019. Origin, domestication and diffusion of Sorghum bicolor. Breeding Sorghum for Diverse End Uses 15−31

doi: 10.1016/B978-0-08-101879-8.00002-4
[15]

Viciedo DO, de Mello Prado R, Lizcano Toledo R, Dos Santos LCN, Calero Hurtado A, et al. 2019. Silicon supplementation alleviates ammonium toxicity in sugar beet (Beta vulgaris L.). Journal of Soil Science and Plant Nutrition 19:413−19

doi: 10.1007/s42729-019-00043-w
[16]

Mahmood S, Daur I, Yasir M, Waqas M, Hirt H. 2022. Synergistic practicing of rhizobacteria and silicon improve salt tolerance: implications from boosted oxidative metabolism, nutrient uptake, growth and grain yield in mung bean. Plants 11:1980

doi: 10.3390/plants11151980
[17]

Zhu Y, Gong H. 2014. Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development 34:455−72

doi: 10.1007/s13593-013-0194-1
[18]

Shi Y, Wang Y, Flowers TJ, Gong H. 2013. Silicon decreases chloride transport in rice (Oryza sativa L.) in saline conditions. Journal of Plant Physiology 170:847−53

doi: 10.1016/j.jplph.2013.01.018
[19]

Shi Y, Zhang Y, Han W, Feng R, Hu Y, et al. 2016. Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L. Frontiers in Plant Science 7:196

doi: 10.3389/fpls.2016.00196
[20]

Liu P, Yin L, Wang S, Zhang M, Deng X, et al. 2015. Enhanced root hydraulic conductance by aquaporin regulation accounts for silicon alleviated salt-induced osmotic stress in Sorghum bicolor L. Environmental and Experimental Botany 111:42−51

doi: 10.1016/j.envexpbot.2014.10.006
[21]

Soundararajan P, Manivannan A, Ko CH, Muneer S, Jeong BR. 2017. Leaf physiological and proteomic analysis to elucidate silicon induced adaptive response under salt stress in Rosa hybrida 'Rock Fire'. International Journal of Molecular Sciences 18:1768

doi: 10.3390/ijms18081768
[22]

Hurtado AC, Chiconato DA, de Mello Prado R, da Silveira Sousa G Junior, Gratão PL, Felisberto G, et al. 2020. Different methods of silicon application attenuate salt stress in sorghum and sunflower by modifying the antioxidative defense mechanism. Ecotoxicology and Environmental Safety 203:110964

doi: 10.1016/j.ecoenv.2020.110964
[23]

Hurtado AC, Chiconato DA, de Mello Prado R, da Silveira Sousa G Junior, Felisberto G. 2019. Silicon attenuates sodium toxicity by improving nutritional efficiency in sorghum and sunflower plants. Plant Physiology and Biochemistry 142:224−33

doi: 10.1016/j.plaphy.2019.07.010
[24]

Oliveira KS, de Mello Prado R, de Farias Guedes VH. 2020. Leaf spraying of manganese with silicon addition is agronomically viable for corn and sorghum plants. Journal of Soil Science and Plant Nutrition 20:872−80

doi: 10.1007/s42729-020-00173-6
[25]

Arnon DI. 1950. Dennis Robert Hoagland: 1884−1949. Science 112:739−42

doi: 10.1126/science.112.2921.739
[26]

Valentine A, Ruzvidzo O, Kleinert A, Kang Y, Bennedito V. 2013. Infrared gas analysis technique for the study of the regulation of photosynthetic responses. Cyclic Nucleotide Signaling in Plants 261−69

doi: 10.1007/978-1-62703-441-8_19
[27]

Barrs HD, Weatherley PE. 1962. A re-examination of the relative turgidity technique for estimating water deficits in leaves. Australian Journal of Biological Sciences 15:413−28

doi: 10.1071/BI9620413
[28]

Rodriguez-Dominguez CM, Forner A, Martorell S, Choat B, Lopez R, et al. 2022. Leaf water potential measurements using the pressure chamber: synthetic testing of assumptions towards best practices for precision and accuracy. Plant, Cell & Environment 45:2037−61

doi: 10.1111/pce.14330
[29]

Murchie EH, Lawson T. 2013. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Journal of Experimental Botany 64:3983−98

doi: 10.1093/jxb/ert208
[30]

Song A, Li P, Fan F, Li Z, Liang Y. 2014. The effect of silicon on photosynthesis and expression of its relevant genes in rice (Oryza sativa L.) under high-zinc stress. PLoS One 9:e113782

doi: 10.1371/journal.pone.0113782
[31]

Fekadu D, Bediye S, Sileshi Z. 2010. Characterizing and predicting chemical composition and in vitro digestibility of crop residue using near infrared reflectance spectroscopy (NIRS). Livestock Research for Rural Development 22:29

[32]

Yemm EW, Willis AJ. 1954. The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal 57:508−14

doi: 10.1042/bj0570508
[33]

Bimurzayev N, Sari H, Kurunc A, Doganay KH, Asmamaw M. 2021. Effects of different salt sources and salinity levels on emergence and seedling growth of faba bean genotypes. Scientific Reports 11:18198

doi: 10.1038/s41598-021-97810-6
[34]

Franzisky BL, Solter J, Xue C, Harter K, Stahl M, et al. 2023. In planta exploitation of leaf apoplastic compounds: a window of opportunity for spatiotemporal studies of apoplastic metabolites, hormones and physiology. bioRxiv

doi: 10.1101/2023.04.05.535553
[35]

Seleiman M, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, et al. 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10:259

doi: 10.3390/plants10020259
[36]

Moussa HR, Abd El-Rahman EL-Galad M. 2015. Comparative response of salt tolerant and salt sensitive maize (Zea mays L.) cultivars to silicon. European Journal of Academic Essays 2:1−5

[37]

Kaur M, Oberoi HK, Gangaiah B, Satpal. 2022. Effect of foliar application of plant bio-regulators in mitigating drought effects on productivity and quality of single cut fodder Sorghum in Punjab, India. Agricultural Research Journal 59:216−20

doi: 10.5958/2395-146X.2022.00034.5
[38]

Ahanger MA, Tomar NS, Tittal M, Argal S, Agarwal RM. 2017. Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiology and Molecular Biology of Plants 23:731−44

doi: 10.1007/s12298-017-0462-7
[39]

Darko E, Gierczik K, Hudák O, Forgó P, Pál M, et al. 2017. Differing metabolic responses to salt stress in wheat-barley addition lines containing different 7H chromosomal fragments. PLoS One 12:e0174170

doi: 10.1371/journal.pone.0174170
[40]

Widodo, Patterson JH, Newbigin E, Tester M, Bacic A, et al. 2009. Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. Journal of Experimental Botany 60:4089−103

doi: 10.1093/jxb/erp243
[41]

Gupta BK, Sahoo KK, Anwar K, Nongpiur RC, Deshmukh R, et al. 2021. Silicon nutrition stimulates Salt-Overly Sensitive (SOS) pathway to enhance salinity stress tolerance and yield in rice. Plant Physiology and Biochemistry 166:593−604

doi: 10.1016/j.plaphy.2021.06.010
[42]

Abdel Latef AA, Tran L-SP. 2016. Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress. Frontiers in Plant Science 7:243

doi: 10.3389/fpls.2016.00243
[43]

Soukup M, Martinka M, Bosnić D, Čaplovičová M, Elbaum R, et al. 2017. Formation of silica aggregates in sorghum root endodermis is predetermined by cell wall architecture and development. Annals of Botany 120:739−53

doi: 10.1093/aob/mcx060
[44]

Zexer N, Elbaum R. 2020. Unique lignin modifications pattern the nucleation of silica in sorghum endodermis. Journal of Experimental Botany 71:6818−29

doi: 10.1093/jxb/eraa127
[45]

Flores RA, Arruda EM, Damin V, Souza JP Junior, Maranhão DDC, et al. 2018. Physiological quality and dry mass production of Sorghum bicolor following silicon (Si) foliar application. Australian Journal of Crop Science 12:631−38

doi: 10.21475/ajcs.18.12.04.pne967
[46]

Widowati S, Luna P. 2022. Nutritional and functional properties of sorghum (Sorghum bicolor (L.) Moench)-based products and potential valorisation of Sorghum Bran. IOP Conference Series: Earth and Environmental Science 1024:012031

doi: 10.1088/1755-1315/1024/1/012031
[47]

Singh P, Kumar V, Sharma J, Saini S, Sharma P, et al. 2022. Silicon supplementation alleviates the salinity stress in wheat plants by enhancing the plant water status, photosynthetic pigments, proline content and antioxidant enzyme activities. Plants 11:2525

doi: 10.3390/plants11192525
[48]

Shen Z, Pu X, Wang S, Dong X, Cheng X, et al. 2022. Silicon improves ion homeostasis and growth of liquorice under salt stress by reducing plant Na+ uptake. Scientific Reports 12:5089

doi: 10.1038/s41598-022-09061-8