[1] |
Ivănescu B, Burlec AF, Crivoi F, Roșu C, Corciovă A. 2021. Secondary metabolites from Artemisia genus as biopesticides and innovative nano-based application strategies. Molecules 26:3061 doi: 10.3390/molecules26103061 |
[2] |
Abad MJ, Bedoya LM, Apaza L, Bermejo P. 2012. The Artemisia L. genus: a review of bioactive essential oils. Molecules 17:2542−66 doi: 10.3390/molecules17032542 |
[3] |
Bora KS, Sharma A. 2011. The genus Artemisia: a comprehensive review. Pharmaceutical Biology 49:101−9 doi: 10.3109/13880209.2010.497815 |
[4] |
Pandey AK, Singh P. 2017. The Genus Artemisia: a 2012-2017 literature review on chemical composition, antimicrobial, insecticidal and antioxidant activities of essential oils. Medicines 4:68 doi: 10.3390/medicines4030068 |
[5] |
Huang X, Ge S, Liu J, Wang Y, Liang X, et al. 2018. Chemical composition and bioactivity of the essential oil from Artemisia lavandulaefolia (Asteraceae) on Plutella xylostella (Lepidoptera: Plutellidae). Florida Entomologist 101:44−48 doi: 10.1653/024.101.0109 |
[6] |
Anshul N, Kalra A, Singh D. 2014. Biological effect of sweet wormwood, Artemisia annua methanol extracts and essential oil against Helicoverpa armigera Hub. (Lepidoptera: Noctuidae). Journal of Entomology and Zoology Studies 2:304−07 |
[7] |
Ma Y, Chen C, Li Q, Xu F, Cheng Y, et al. 2019. Monitoring antifungal agents of Artemisia annua against Fusarium oxysporum and Fusarium solani, associated with Panax notoginseng root-rot disease. Molecules 24:213 doi: 10.3390/molecules24010213 |
[8] |
Zhang W, Gao T, Li P, Tian C, Song A, et al. 2020. Chrysanthemum CmWRKY53 negatively regulates the resistance of chrysanthemum to the aphid Macrosiphoniella sanborni. Horticulture Research 7:109 doi: 10.1038/s41438-020-0334-0 |
[9] |
Badawy MEI, Abdelgaleil SAM. 2014. Composition and antimicrobial activity of essential oils isolated from Egyptian plants against plant pathogenic bacteria and fungi. Industrial Crops and Products 52:776−82 doi: 10.1016/j.indcrop.2013.12.003 |
[10] |
Sun Y, Guan Z, Chen S, Fang W, Chen F. 2012. Identification of aphid resistance in eleven species from Dendranthema and Artemisia at seedling stage. Acta Ecologica Sinica 32:319−25 doi: 10.5846/stxb201011151632 |
[11] |
Deng Y. 2010. Study on chrysanthemum resistant germplasm innovation by intergeneric hybridization. Thesis. Nanjing Agricultural University, Nanjing. pp. 90−98 |
[12] |
Yuan HD, Yuan HY, Chung SH, Jin GZ, Piao GC. 2010. An active part of Artemisia sacrorum Ledeb. attenuates hepatic lipid accumulation through activating AMP-activated protein kinase in human HepG2 cells. Bioscience, Biotechnology, and Biochemistry 74:322−28 doi: 10.1271/bbb.90651 |
[13] |
Choi E, Park H, Lee J, Kim G. 2013. Anticancer, antiobesity, and anti-inflammatory activity of Artemisia species in vitro. Journal of Traditional Chinese Medicine 33:92−97 doi: 10.1016/S0254-6272(13)60107-7 |
[14] |
Yuan H, Lu X, Ma Q, Li D, Xu G, et al. 2016. Flavonoids from Artemisia sacrorum Ledeb. and their cytotoxic activities against human cancer cell lines. Experimental and Therapeutic Medicine 12:1873−78 doi: 10.3892/etm.2016.3556 |
[15] |
Suleimen EM, Sisengalieva GG, Adilkhanova AA, Dudkin RV, Gorovoi PG, et al. 2019. Composition and biological activity of essential oil from Artemisia keiskeana. Chemistry of Natural Compounds 55:154−56 doi: 10.1007/s10600-019-02641-7 |
[16] |
Lee JH. 2016. Antibacterial activity against oral pathogens and anti–oral cancer activity of Artemisia species in vitro. Journal of Herbs, Spices & Medicinal Plants 22:130−38 doi: 10.1080/10496475.2015.1091424 |
[17] |
Sun H, Zhang F, Chen S, Guan Z, Jiang J, et al. 2015. Effects of aphid herbivory on volatile organic compounds of Artemisia annua and Chrysanthemum morifolium. Biochemical Systematics and Ecology 60:225−33 doi: 10.1016/j.bse.2015.04.023 |
[18] |
Mun HY, Jeong JY, Kim CJ, Lee HB. 2012. First report of chrysanthemum (Chrysanthemum morifolium) crown rot caused by Fusarium solani in Korea. The Plant Pathology Journal 28:49−54 doi: 10.5423/PPJ.NT.10.2011.0195 |
[19] |
Cao Z. 2022. Identification, research development on fungicide-resistant monitoring and control of important pathogen of chrysanthemum. Thesis. Nanjing Agricultural University, Nanjing. pp. 15−20 |
[20] |
Bouwmeester H, Schuurink RC, Bleeker PM, Schiestl F. 2019. The role of volatiles in plant communication. The Plant Journal 100:892−907 doi: 10.1111/tpj.14496 |
[21] |
Simon AL, Caulfield JC, Hammond-Kosack KE, Field LM, Aradottir GI. 2021. Identifying aphid resistance in the ancestral wheat Triticum monococcum under field conditions. Scientific Reports 11:13495 doi: 10.1038/s41598-021-92883-9 |
[22] |
Hussein HS, Tawfeek ME, Abdelgaleil SAM. 2021. Chemical composition, aphicidal and antiacetylcholinesterase activities of essential oils against Aphis nerii Boyer de Fonscolombe (Hemiptera: Aphididae). Journal of Asia-Pacific Entomology 24:259−65 doi: 10.1016/j.aspen.2021.02.001 |
[23] |
Wang F, Park YL, Gutensohn M. 2020. Glandular trichome-derived sesquiterpenes of wild tomato accessions (Solanum habrochaites) affect aphid performance and feeding behavior. Phytochemistry 180:112532 doi: 10.1016/j.phytochem.2020.112532 |
[24] |
Wang F, Park YL, Gutensohn M. 2021. Glandular trichome-derived mono- and sesquiterpenes of tomato have contrasting roles in the interaction with the potato aphid Macrosiphum euphorbiae. Journal of Chemical Ecology 47:204−14 doi: 10.1007/s10886-021-01243-4 |
[25] |
Li J, Hu H, Mao J, Yu L, Stoopen G, et al. 2019. Defense of pyrethrum flowers: repelling herbivores and recruiting carnivores by producing aphid alarm pheromone. New Phytologist 223:1607−20 doi: 10.1111/nph.15869 |
[26] |
Zhong J, Guo Y, Shi H, Liang Y, Guo Z, et al. 2022. Volatiles mediated an eco-friendly aphid control strategy of Chrysanthemum genus. Industrial Crops and Products 180:114734 doi: 10.1016/j.indcrop.2022.114734 |
[27] |
Sampietro DA, Lizarraga EF, Ibatayev ZA, Omarova AB, Suleimen YM, Catalan CA. 2016. Chemical composition and antimicrobial activity of essential oils from Acantholippia deserticola, Artemisia proceriformis, Achillea micrantha and Libanotis buchtormensis against phytopathogenic bacteria and fungi. Natural Product Research 30:1950−55 doi: 10.1080/14786419.2015.1091453 |
[28] |
Czerniewicz P, Chrzanowski G, Sprawka I, Sytykiewicz H. 2018. Aphicidal activity of selected Asteraceae essential oils and their effect on enzyme activities of the green peach aphid, Myzus persicae (Sulzer). Pesticide Biochemistry and Physiology 145:84−92 doi: 10.1016/j.pestbp.2018.01.010 |
[29] |
Julio LF, Burillo J, Giménez C, Cabrera R, Díaz CE, et al. 2015. Chemical and biocidal characterization of two cultivated Artemisia absinthium populations with different domestication levels. Industrial Crops and Products 76:787−92 doi: 10.1016/j.indcrop.2015.07.041 |
[30] |
Cheng Z, Duan H, Zhu X, Fan F, Li R, et al. 2020. Effects of patchouli and wormwood oils on the bioassays and behaviors of Tetranychus cinnabarinus (Boisduval) (Acari: Tetranychidae). International Journal of Pest Management 66:271−78 doi: 10.1080/09670874.2019.1636155 |
[31] |
Rizvi SAH, Ling S, Tian F, Xie F, Zeng X. 2018. Toxicity and enzyme inhibition activities of the essential oil and dominant constituents derived from Artemisia absinthium L. against adult Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Industrial Crops and Products 121:468−75 doi: 10.1016/j.indcrop.2018.05.031 |