[1]

Zhang Y, Zhang C, Wang G, Wang Y, Qi C, et al. 2019. The R2R3 MYB transcription factor MdMYB30 modulates plant resistance against pathogens by regulating cuticular wax biosynthesis. BMC Plant Biology 19:362

doi: 10.1186/s12870-019-1918-4
[2]

Yeats TH, Rose JKC. 2013. The formation and function of plant cuticles. Plant Physiology 163:5−20

doi: 10.1104/pp.113.222737
[3]

Zhang Y, Tian Y, Man Y, Zhang C, Wang Y, et al. 2023. Apple SUMO E3 ligase MdSIZ1 regulates cuticular wax biosynthesis by SUMOylating transcription factor MdMYB30. Plant Physiology 191:1771−88

doi: 10.1093/plphys/kiad007
[4]

Wang H, Lu Z, Xu Y, Zhang J, Han L, et al. 2023. Roles of very long-chain fatty acids in compound leaf patterning in Medicago trunca tula. Plant Physiology 191:1751−70

doi: 10.1093/plphys/kiad006
[5]

Huang H, Yang X, Zheng M, Chen Z, Yang Z, et al. 2023. An ancestral role for 3-KETOACYL-COA SYNTHASE3 as a negative regulator of plant cuticular wax synthesis. The Plant Cell 35:2251−70

doi: 10.1093/plcell/koad051
[6]

Kong L, Liu Y, Zhi P, Wang X, Xu B, et al. 2020. Origins and evolution of cuticle biosynthetic machinery in land plants. Plant Physiology 184:1998−2010

doi: 10.1104/pp.20.00913
[7]

Kunst L, Samuels L. 2009. Plant cuticles shine: advances in wax biosynthesis and export. Current Opinion in Plant Biology 12:721−27

doi: 10.1016/j.pbi.2009.09.009
[8]

Wu Y, Lv Y, Li X, Gao H, Zhou M, et al. 2024. The effect of epigallocatechin-3-gallate (EGCG), a main active ingredient in tea residues, on improving fruit quality and prolonging postharvest storage in apple. Scientia Horticulturae 326:112782

doi: 10.1016/j.scienta.2023.112782
[9]

Lian X, Gao H, Jiang H, Liu C, Li Y. 2021. MdKCS2 increased plant drought resistance by regulating wax biosynthesis. Plant Cell Reports 40:2357−68

doi: 10.1007/s00299-021-02776-4
[10]

Declercq M, Alkio M, Sprink T, Schreiber L, Knoche M. 2014. Effect of sweet cherry genes PaLACS2 and PaATT1 on cuticle deposition, composition and permeability in Arabidopsis. Tree Genetics & Genomes 10:1711−21

doi: 10.1007/s11295-014-0791-4
[11]

Li J, Zhang C, Zhang Y, Gao H, Wang H, et al. 2022. An apple long-chain acyl-CoA synthase, MdLACS1, enhances biotic and abiotic stress resistance in plants. Plant Physiology and Biochemistry 189:115−25

doi: 10.1016/j.plaphy.2022.08.021
[12]

Man Y, Lv Y, Lv H, Jiang H, Wang T, et al. 2024. MdDEWAX decreases plant drought resistance by regulating wax biosynthesis. Plant Physiology and Biochemistry 206:108288

doi: 10.1016/j.plaphy.2023.108288
[13]

Kandel S, Sauveplane V, Olry A, Diss L, Benveniste I, et al. 2006. Cytochrome P450-dependent fatty acid hydroxylases in plants. Phytochemistry Reviews 5:359−72

doi: 10.1007/s11101-006-9041-1
[14]

Greer S, Wen M, Bird D, Wu X, Samuels L, et al. 2007. The cytochrome P450 enzyme CYP96A15 is the midchain alkane hydroxylase responsible for formation of secondary alcohols and ketones in stem cuticular wax of Arabidopsis. Plant Physiology 145:653−67

doi: 10.1104/pp.107.107300
[15]

Zhou M, Yu Z, Gao H, Li M, Wu Y, et al. 2023. Ectopic expression of an apple ABCG transporter gene MdABCG25 increases plant cuticle wax accumulation and abiotic stress tolerance. Fruit Research 3:43

doi: 10.48130/FruRes-2023-0043
[16]

Nelson D, Werck-Reichhart D. 2011. A P450-centric view of plant evolution. The Plant Journal 66:194−211

doi: 10.1111/j.1365-313X.2011.04529.x
[17]

Bak S, Beisson F, Bishop G, Hamberger B, Höfer R, et al. 2011. Cytochromes P450. The Arabidopsis Book 9:e0144

doi: 10.1199/tab.0144
[18]

Sun C, Liu Y, Li G, Chen Y, Li M, et al. 2024. ZmCYP90D1 regulates maize internode development by modulating brassinosteroid-mediated cell division and growth. The Crop Journal 12:58−67

doi: 10.1016/j.cj.2023.11.002
[19]

Li L, Chang Z, Pan Z, Fu Z, Wang X. 2008. Modes of heme binding and substrate access for cytochrome P450 CYP74A revealed by crystal structures of allene oxide synthase. Proceedings of the National Academy of Sciences of the United States of America 105:13883−88

doi: 10.1073/pnas.0804099105
[20]

Tanaka Y, Brugliera F. 2013. Flower colour and cytochromes P450. Philosophical Transactions of the Royal Society B: Biological Sciences 368:20120432

doi: 10.1098/rstb.2012.0432
[21]

Nelson DR, Schuler MA. 2013. Cytochrome P450 genes from the sacred lotus genome. Tropical Plant Biology 6:138−51

doi: 10.1007/s12042-013-9119-z
[22]

Bozak KR, Christoffersen RE. 1992. Expression of a ripening-related avocado (Persea americana) cytochrome P450 in Yeast. Plant Physiology 100:1976−81

doi: 10.1104/pp.100.4.1976
[23]

Pinot F, Beisson F. 2010. Cytochrome P450 metabolizing fatty acids in plants: characterization and physiological roles. The FEBS Journal 278:195−205

doi: 10.1111/j.1742-4658.2010.07948.x
[24]

Tully TLA, Kaushik P, O'Connor J, Bernards MA. 2020. Fatty acid ω-hydroxylases of soybean: CYP86A gene expression and aliphatic suberin deposition. Botany 98:317−26

doi: 10.1139/cjb-2019-0198
[25]

Natarajan P, Akinmoju TA, Nimmakayala P, Lopez-Ortiz C, Garcia-Lozano M, et al. 2020. Integrated metabolomic and transcriptomic analysis to characterize cutin biosynthesis between low- and high-cutin genotypes of Capsicum chinense Jacq. International Journal of Molecular Sciences 21:1397

doi: 10.3390/ijms21041397
[26]

Xiao F, Mark Goodwin S, Xiao Y, Sun Z, Baker D, et al. 2004. Arabidopsis CYP86A2 represses Pseudomonas syringae type III genes and is required for cuticle development. The EMBO Journal 23:2903−13

doi: 10.1038/sj.emboj.7600290
[27]

Xuenan Zhang, Yao Ge, Xue Yang, Yan Ma, Lingmin Dai, et al. 2021. Overexpression of Vvcyp86a1 Improves salt tolerance in Arabidopsis thaliana during germination and seedling stages. Chemistry and Medical Engineering 2021:109−117

doi: 10.25236/icbcme.2021.022
[28]

Xu X, Chen M, Ji J, Xu Q, Qi X, et al. 2017. Comparative RNA-seq based transcriptome profiling of waterlogging response in cucumber hypocotyls reveals novel insights into the de novo adventitious root primordia initiation. BMC Plant Biology 17:129

doi: 10.1186/s12870-017-1081-8
[29]

Gao L, Cao J, Gong S, Hao N, Du Y, et al. 2023. The COPII subunit CsSEC23 mediates fruit glossiness in cucumber. The Plant Journal 116:524−40

doi: 10.1111/tpj.16389
[30]

Zhang C, Hu X, Zhang Y, Liu Y, Wang G, et al. 2020. An apple long-chain acyl-CoA synthetase 2 gene enhances plant resistance to abiotic stress by regulating the accumulation of cuticular wax. Tree Physiology 40:1450−65

doi: 10.1093/treephys/tpaa079
[31]

Wang X, Yang F, Zhang J, Ren Y, An J, et al. 2023. Ectopic expression of MmCYP1A1, a mouse cytochrome P450 gene, positively regulates stress tolerance in apple calli and Arabidopsis. Plant Cell Reports 42:433−48

doi: 10.1007/s00299-022-02969-5
[32]

Werck-Reichhart D, Feyereisen R. 2000. Cytochromes P450: a success story. Genome Biology 1:reviews3003.1

doi: 10.1186/gb-2000-1-6-reviews3003
[33]

Hansen CC, Nelson DR, Møller BL, Werck-Reichhart D. 2021. Plant cytochrome P450 plasticity and evolution. Molecular Plant 14:1244−65

doi: 10.1016/j.molp.2021.06.028
[34]

Zhang J, Liu Z, Zhang Y, Zhang C, Li X, et al. 2023. PpyMYB144 transcriptionally regulates pear fruit skin russeting by activating the cytochrome P450 gene PpyCYP86B1. Planta 257:69

doi: 10.1007/s00425-023-04102-6
[35]

Wang G, Xu J, Li L, Guo Z, Si Q, et al. 2020. GbCYP86A1-1 from Gossypium barbadense positively regulates defence against Verticillium dahliae by cell wall modification and activation of immune pathways. Plant Biotechnology Journal 18:222−38

doi: 10.1111/pbi.13190
[36]

Höfer R, Briesen I, Beck M, Pinot F, Schreiber L, et al. 2008. The Arabidopsis cytochrome P450 CYP86A1 encodes a fatty acid ω-hydroxylase involved in suberin monomer biosynthesis. Journal of Experimental Botany 59:2347−60

doi: 10.1093/jxb/ern101
[37]

He Y. 2012. Structural polymers and molecular pathways that influence tomato fruit integrity and surface quality traits. Thesis. Cornell University, NY.

[38]

Flagel LE, Wendel JF. 2009. Gene duplication and evolutionary novelty in plants. New Phytologist 183:557−64

doi: 10.1111/j.1469-8137.2009.02923.x
[39]

Richardson SR, Doucet AJ, Kopera HC, Moldovan JB, Garcia-Perez JL, et al. 2015. The influence of LINE-1 and SINE retrotransposons on mammalian genomes. Microbiology Spectrum 3:MDNA3-0061-2014

doi: 10.1128/microbiolspec.mdna3-0061-2014
[40]

Nelson DR. 2011. Progress in tracing the evolutionary paths of cytochrome P450. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1814:14−18

doi: 10.1016/j.bbapap.2010.08.008
[41]

Zhang C, Wang Y, Hu X, Zhang Y, Wang G, et al. 2020. An apple AP2/EREBP-type transcription factor, MdWRI4, enhances plant resistance to abiotic stress by increasing cuticular wax load. Environmental and Experimental Botany 180:104206

doi: 10.1016/j.envexpbot.2020.104206
[42]

Sun K, Fang H, Chen Y, Zhuang Z, Chen Q, et al. 2021. Genome-wide analysis of the cytochrome P450 gene family involved in salt tolerance in Gossypium hirsutum. Frontiers in Plant Science 12:685054

doi: 10.3389/fpls.2021.685054
[43]

Wen H, Wang Y, Wu B, Feng Y, Dang Y, et al. 2021. Analysis of wheat wax regulation mechanism by liposome and transcriptome. Frontiers in Genetics 12:757920

doi: 10.3389/fgene.2021.757920
[44]

Zhao Y, Peng T, Sun H, Teotia S, Wen H, et al. 2019. miR1432-OsACOT (Acyl-CoA thioesterase) module determines grain yield via enhancing grain filling rate in rice. Plant Biotechnology Journal 17:712−23

doi: 10.1111/pbi.13009
[45]

Yang X, Wu D, Shi J, He Y, Pinot F, et al. 2014. Rice CYP703A3, a cytochrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine. Journal of Integrative Plant Biology 56:979−94

doi: 10.1111/jipb.12212
[46]

Zhong M, Jiang H, Cao Y, Wang Y, You C, et al. 2020. MdCER2 conferred to wax accumulation and increased drought tolerance in plants. Plant Physiology and Biochemistry 149:277−85

doi: 10.1016/j.plaphy.2020.02.013
[47]

Jiang Z, Ding Y, Liu J, Yin W, Qi Y, et al. 2022. The MdFAD27 and MdFAD28 play critical roles in the development of greasiness disorder in postharvest apples. Postharvest Biology and Technology 191:111990

doi: 10.1016/j.postharvbio.2022.111990