[1]

Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, et al. 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America 110(22):9066−71

doi: 10.1073/pnas.1219451110
[2]

Zhang J, Ni Y, Qian L, Fang Q, Zheng T, et al. 2021. Decreased abundance of Akkermansia muciniphila leads to the impairment of insulin secretion and glucose homeostasis in lean type 2 diabetes. Advanced Science 8(16):e2100536

doi: 10.1002/advs.202100536
[3]

Rao Y, Kuang Z, Li C, Guo S, Xu Y, et al. 2021. Gut Akkermansia muciniphila ameliorates metabolic dysfunction-associated fatty liver disease by regulating the metabolism of L-aspartate via gut-liver axis. Gut microbes 13(1):1927633

doi: 10.1080/19490976.2021.1927633
[4]

Roopchand DE, Carmody RN, Kuhn P, Moskal K, Rojas-Silva P, et al. 2015. Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome. Diabetes 64(8):2847−58

doi: 10.2337/db14-1916
[5]

Tu A, Zhao X, Shan Y, Lü X. 2020. Potential role of ovomucin and its peptides in modulation of intestinal health: A review. International Journal of Biological Macromolecules 162:385−93

doi: 10.1016/j.ijbiomac.2020.06.148
[6]

Iglesias-Figueroa BF, Siqueiros-Cendón TS, Gutierrez DA, Aguilera RJ, Espinoza-Sánchez EA, et al. 2019. Recombinant human lactoferrin induces apoptosis, disruption of F-actin structure and cell cycle arrest with selective cytotoxicity on human triple negative breast cancer cells. Apoptosis 24(7-8):562−77

doi: 10.1007/s10495-019-01539-7
[7]

Zheng F, Du YM, Lin XS, Zhou LQ, Bai Y, et al. 2019. N-Glycosylation plays an essential and species-specific role in anti-Infection function of milk proteins using Listeria monocytogenes as model pathogen. Journal of Agricultural and Food Chemistry 67:10774−81

doi: 10.1021/acs.jafc.9b03154
[8]

Karav S, Le Parc A, Leite Nobrega De Moura Bell JM, Frese SA, Kirmiz N, et al. 2016. Oligosaccharides released from milk glycoproteins are selective growth substrates for infant-associated Bifidobacteria. Applied and Environmental Microbiology 82:3622−30

doi: 10.1128/AEM.00547-16
[9]

Cheng G, Lyu Y, Ran R, Liu L, Voglmeir J. 2024. Expression and in vitro glycosylation of recombinant edible bird nest (EBN) mucin. Food Materials Research 4:e002

doi: 10.48130/fmr-0023-0037
[10]

Linden SK, Sutton P, Karlsson NG, Korolik V, McGuckin MA. 2008. Mucins in the mucosal barrier to infection. Mucosal Immunology 1(3):183−97

doi: 10.1038/mi.2008.5
[11]

Chen L, Laborda P, Cai Z, Hagan AK, Lu A, et al. 2022. Novel chemical- and protein-mediated methods for glucosamine detection. Food Materials Research 2:19

doi: 10.48130/FMR-2022-0019
[12]

Yu YY, Zhang SY, Sun JH, Li YY, Zhang YY, et al. 2024. Biocatalytic β-glucosylation/β-galactosylation of Rebaudioside C by glycosynthases. Food Materials Research 4:e008

doi: 10.48130/fmr-0023-0043
[13]

Lin X, Yao H, Guo J, Huang Y, Wang W, et al. 2022. Protein glycosylation and gut microbiota utilization can limit the in vitro and in vivo metabolic cellular incorporation of Neu5Gc. Molecular Nutrition & Food Research 66(5):e2100615

doi: 10.1002/mnfr.202100615
[14]

Wang T, Jia XR, Liu L, Voglmeir J. 2021. Changes in protein N-glycosylation during the fruit development and ripening in melting-type peach. Food Materials Research 1:2

doi: 10.48130/FMR-2021-0002
[15]

Liu FF, Kulinich A, Du YM, Liu L, Voglmeir J. 2016. Sequential processing of mannose-containing glycans by two α-mannosidases from Solitalea canadensis. Glycoconjugate Journal 33:159−68

doi: 10.1007/s10719-016-9651-9
[16]

Liu FF, Wang M, Ma GH, Kulinich A, Liu L, et al. 2024. Characterization of Solitalea canadensis α-mannosidase with specific activity towards α1, 3-Mannosidic linkages. Carbohydrate Research 538:109100

doi: 10.1016/j.carres.2024.109100
[17]

Laborda P, Lyu YM, Parmeggiani F, Lu AM, Wang WJ, et al. 2020. An enzymatic N-acylation step enables the biocatalytic synthesis of unnatural sialosides. Angewandte Chemie 59(13):5308−11

doi: 10.1002/anie.201914338
[18]

Segers A, de Vos WM. 2023. Mode of action of Akkermansia muciniphila in the intestinal dialogue: role of extracellular proteins, metabolites and cell envelope components. Microbiome Research Reports 2(1):6

doi: 10.20517/mrr.2023.05
[19]

Fang X, Li FJ, Hong DJ. 2021. Potential role of Akkermansia muciniphila in parkinson's disease and other neurological/autoimmune diseases. Current Medical Science 41(6):1172−77

doi: 10.1007/s11596-021-2464-5
[20]

Tailford LE, Crost EH, Kavanaugh D, Juge N. 2015. Mucin glycan foraging in the human gut microbiome. Frontiers in Genetics 6:81

doi: 10.3389/fgene.2015.00081
[21]

van Passel MWJ, Kant R, Zoetendal EG, Plugge CM, Derrien M, et al. 2011. The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLoS ONE 6(3):e16876

doi: 10.1371/journal.pone.0016876
[22]

Derrien M, van Passel MW, van de Bovenkamp JH, Schipper RG, de Vos WM, et al. 2010. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes 1(4):254−68

doi: 10.4161/gmic.1.4.12778
[23]

Jensen M, Stenfelt L, Ricci Hagman J, Pichler MJ, Weikum J, et al. 2024. Akkermansia muciniphila exoglycosidases target extended blood group antigens to generate ABO-universal blood. Nature Microbiology 9(5):1176−88

doi: 10.1038/s41564-024-01663-4
[24]

Elzinga J, Narimatsu Y, de Haan N, Clausen H, de Vos W M, et al. 2024. Binding of Akkermansia muciniphila to mucin is O-glycan specific. Nature Communications 15(1):4582

doi: 10.1038/s41467-024-48770-8
[25]

MacMillan JL, Vicaretti SD, Noyovitz B, Xing X, Low KE, et al. 2019. Structural analysis of broiler chicken small intestinal mucin O-glycan modification by Clostridium perfringens. Poultry Science 98(10):5074−88

doi: 10.3382/ps/pez297
[26]

Hasnain SZ, Wang H, Ghia JE, Haq N, Deng Y, et al. 2010. Mucin gene deficiency in mice impairs host resistance to an enteric parasitic infection. Gastroenterology 138(5):1763−1771.E5

doi: 10.1053/j.gastro.2010.01.045
[27]

Sonoyama K, Ogasawara T, Goto H, Yoshida T, Takemura N, et al. 2010. Comparison of gut microbiota and allergic reactions in BALB/c mice fed different cultivars of rice. British Journal of Nutrition 103(2):218−26

doi: 10.1017/S0007114509991589
[28]

Weir TL, Manter DK, Sheflin AM, Barnett BA, Heuberger AL, et al. 2013. Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PLoS ONE 8(8):e70803

doi: 10.1371/journal.pone.0070803
[29]

Dubourg G, Lagier JC, Armougom F, Robert C, Audoly G, et al. 2013. High-level colonisation of the human gut by Verrucomicrobia following broad-spectrum antibiotic treatment. International Journal of Antimicrobial Agents 41(2):149−55

doi: 10.1016/j.ijantimicag.2012.10.012
[30]

Vrieze A, Out C, Fuentes S, Jonker L, Reuling I, et al. 2014. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. Journal of Hepatology 60(4):824−31

doi: 10.1016/j.jhep.2013.11.034
[31]

Nobel YR, Cox L M, Kirigin FF, Bokulich NA, Yamanishi S, et al. 2015. Metabolic and metagenomic outcomes from early-life pulsed antibiotic treatment. Nature Communications 6:7486

doi: 10.1038/ncomms8486
[32]

Yue H, Han Y, Yin B, Cheng C, Liu L. 2020. Comparison of the antipathogenic effect toward Staphylococcus aureus of N-linked and free oligosaccharides derived from human, bovine, and goat milk. Journal of Food Science 85(8):2329−39

doi: 10.1111/1750-3841.15150
[33]

Yin B, Lin X, Wang T, Liu L. 2022. Detailed characterization of antipathogenic properties of human milk N-glycome, against Staphylococcus aureus, indicating its targeting on cell surface proteins. ACS Infectious Diseases 8(3):635−44

doi: 10.1021/acsinfecdis.1c00652
[34]

Wang WL, Du YM, Wang W, Conway LP, Cai ZP, et al. 2017. Comparison of the bifidogenic activity of human and bovine milk N-glycome. Journal of Functional Foods 33:40−51

doi: 10.1016/j.jff.2017.03.017