[1]

Qin W, Bin Y, Nan W, Jian G. 2022. Tumor immunomodulatory effects of polyphenols. Frontiers in Immunology 13:1041138

doi: 10.3389/fimmu.2022.1041138
[2]

Laganà P, Coniglio MA, Fiorino M, Delgado AM, Chammen N, et al. 2020. Phenolic substances in foods and anticarcinogenic properties: a public health perspective. Journal of AOAC International 103(4):935−39

doi: 10.1093/jaocint/qsz028
[3]

Shi R, Zhou N, Zhang H, Gong M, Han L. 2022. Bioaffinity ultrafiltration coupled with HPLC-ESI-MS/MS for screening potential α-glucosidase inhibitors from pomegranate peel. Frontiers in Nutrition 9:1014862

doi: 10.3389/fnut.2022.1014862
[4]

Zhang W, Hou C, Du L, Zhang X, Yang M, et al. 2021. Protective action of pomegranate peel polyphenols in type 2 diabetic rats via the translocation of Nrf2 and FoxO1 regulated by the PI3K/Akt pathway. Food & Function 12:11408−19

doi: 10.1039/D1FO01213D
[5]

Dixon RA, Xie DY, Sharma SB. 2005. Proanthocyanidins – a final frontier in flavonoid research? New Phytologist 165(1):9−28

doi: 10.1111/j.1469-8137.2004.01217.x
[6]

Chen J. 2023. Essential role of medicine and food homology in health and wellness. Chinese Herbal Medicines 15(3):347−48

doi: 10.1016/j.chmed.2023.05.001
[7]

Wang Q, Yuan T, Zhu X, Song G, Wang D, et al. 2023. The phenolics, antioxidant activity and in vitro digestion of pomegranate (Punica granatum L.) peels: an investigation of steam explosion pre-treatment. Frontiers in Nutrition 10:1161970

doi: 10.3389/fnut.2023.1161970
[8]

Peršurić Ž, Saftić Martinović L, Malenica M, Gobin I, Pedisić S, et al. 2020. Assessment of the biological activity and phenolic composition of ethanol extracts of pomegranate (Punica granatum L.) peels. Molecules 25(24):5916

doi: 10.3390/molecules25245916
[9]

Çam M, Hışıl Y. 2010. Pressurised water extraction of polyphenols from pomegranate peels. Food Chemistry 123(3):878−85

doi: 10.1016/j.foodchem.2010.05.011
[10]

Li X, Wasila H, Liu L, Yuan T, Gao Z, et al. 2015. Physicochemical characteristics, polyphenol compositions and antioxidant potential of pomegranate juices from 10 Chinese cultivars and the environmental factors analysis. Food Chemistry 175:575−84

doi: 10.1016/j.foodchem.2014.12.003
[11]

Abountiolas M, do Nascimento Nunes C. 2018. Polyphenols, ascorbic acid and antioxidant capacity of commercial nutritional drinks, fruit juices, smoothies and teas. International Journal of Food Science & Technology 53(1):188−98

doi: 10.1111/ijfs.13573
[12]

Meenu M, Bansal V, Rana S, Sharma N, Kumar V, et al. 2023. Deep eutectic solvents (DESs) and natural deep eutectic solvents (NADESs): Designer solvents for green extraction of anthocyanin. Sustainable Chemistry and Pharmacy 34:101168

doi: 10.1016/j.scp.2023.101168
[13]

Aktaş H, Kurek MA. 2024. Deep eutectic solvents for the extraction of polyphenols from food plants. Food Chemistry 444:138629

doi: 10.1016/j.foodchem.2024.138629
[14]

Palos-Hernández A, Gutiérrez Fernández MY, Escuadra Burrieza J, Pérez-Iglesias JL, González-Paramás AM. 2022. Obtaining green extracts rich in phenolic compounds from underexploited food by-products using natural deep eutectic solvents. Opportunities and challenges Sustainable Chemistry and Pharmacy 29:100773

doi: 10.1016/j.scp.2022.100773
[15]

Qin G, Zhang F, Ren M, Chen X, Liu C, et al. 2023. Eco-friendly and efficient extraction of polyphenols from Ligustrum robustum by deep eutectic solvent assisted ultrasound. Food Chemistry 429:136828

doi: 10.1016/j.foodchem.2023.136828
[16]

Bertolo MRV, Martins VCA, Plepis AMG, Bogusz S. 2021. Utilization of pomegranate peel waste: Natural deep eutectic solvents as a green strategy to recover valuable phenolic compounds. Journal of Cleaner Production 327:129471

doi: 10.1016/j.jclepro.2021.129471
[17]

More PR, Jambrak AR, Arya SS. 2022. Green, environment-friendly and sustainable techniques for extraction of food bioactive compounds and waste valorization. Trends in Food Science & Technology 128:296−315

doi: 10.1016/j.jpgs.2022.08.016
[18]

Lampakis D, Skenderidis P, Leontopoulos S. 2021. Technologies and extraction methods of polyphenolic compounds derived from pomegranate (Punica granatum) peels. A mini review. Processes 9:236

doi: 10.3390/pr9020236
[19]

Vargas-Serna CL, Ochoa-Martínez CI, Vélez-Pasos C. 2022. Microwave-assisted extraction of phenolic compounds from pineapple peel using deep eutectic solvents. Horticulturae 8:791

doi: 10.3390/horticulturae8090791
[20]

Rajha HN, Mhanna T, El Kantar S, El Khoury A, Louka N, et al. 2019. Innovative process of polyphenol recovery from pomegranate peels by combining green deep eutectic solvents and a new infrared technology. LWT 111:138−46

doi: 10.1016/j.lwt.2019.05.004
[21]

Kyriakidou A, Makris DP, Lazaridou A, Biliaderis CG, Mourtzinos I. 2021. Physical properties of chitosan films containing pomegranate peel extracts obtained by deep eutectic solvents. Foods 10:1262

doi: 10.3390/foods10061262
[22]

Dziubinska-Kühn K, Pupier M, Matysik J, Viger-Gravel J, Karg B, et a. 2022. Time-dependent hydrogen bond network formation in glycerol-based deep eutectic solvents. Chemphyschem 23(10):e202100806

doi: 10.1002/cphc.202100806
[23]

Alañón ME, Ivanović M, Gómez-Caravaca AM, Arráez-Román D, Segura-Carretero A. 2020. Choline chloride derivative-based deep eutectic liquids as novel green alternative solvents for extraction of phenolic compounds from olive leaf. Arabian Journal of Che mistry 13(1):1685−701

doi: 10.1016/j.arabjc.2018.01.003
[24]

Shishov A, Pochivalov A, Dubrovsky I, Bulatov A. 2023. Deep eutectic solvents with low viscosity for automation of liquid-phase microextraction based on lab-in-syringe system: Separation of Sudan dyes. Talanta 255:124243

doi: 10.1016/j.talanta.2022.124243
[25]

Man G, Xu L, Wang Y, Liao X, Xu Z. 2022. Profiling phenolic composition in pomegranate peel from nine selected cultivars using UHPLC-QTOF-MS and UPLC-QQQ-MS. Frontiers in Nutrition 8:807447

doi: 10.3389/fnut.2021.807447
[26]

Zheng W, Gao B, Zhu H, Zhu L, Lu Z, et al. 2023. Chemical compositions and antioxidant activities of thirty-seven typical pomegranates grown in China. Journal of Food Processing and Preservation 2023:9915770

doi: 10.1155/2023/9915770
[27]

Man G, Ma Y, Xu L, Liao X, Zhao L. 2023. Comparison of thermal and non-thermal extraction methods on free and bound phenolics in pomegranate peel. Innovative Food Science & Emerging Technologies 84:103291

doi: 10.1016/j.ifset.2023.103291
[28]

Zhang Y, Wang X, Lu B, Gao Y, Zhang Y, et al. 2022. Functional and binding studies of gallic acid showing platelet aggregation inhibitory effect as a thrombin inhibitor. Chinese Herbal Medicines 14(2):303−9

doi: 10.1016/j.chmed.2021.09.001
[29]

Jin X, Ying J, Ni J, Gao Z, Zhang X. 2024. Anti-lung cancer targets of ellagic acid and biological interaction with a blood carrier protein. Arabian Journal of Chemistry 17(5):105725

doi: 10.1016/j.arabjc.2024.105725
[30]

Milošević M, Vulić J, Kukrić Z, Lazić B, Četojević-Simin D, et al. 2023. Polyphenolic composition, antioxidant and antiproliferative activity of edible and inedible parts of cultivated and wild pomegranate (Punica granatum L.). Food Technology and Biotechnology 61(4):485−93

doi: 10.17113/ftb.61.04.23.8159
[31]

Fu H, Li W, Liu J, Tang Q, Weng Z, et al. 2024. Ellagic acid inhibits dihydrotestosterone-induced ferroptosis and promotes hair regeneration by activating the wnt/β-catenin signaling pathway. Journal of Ethnopharmacology 330(10):118227

doi: 10.1016/j.jep.2024.118227
[32]

Liu Y, Kong KW, Wu DT, Liu HY, Li HB, et al. 2022. Pomegranate peel-derived punicalagin: Ultrasonic-assisted extraction, purification, and its α-glucosidase inhibitory mechanism. Food Chemistry 374:131635

doi: 10.1016/j.foodchem.2021.131635
[33]

Abu-Elfotuh K, Hamdan AME, Abbas AN, Alahmre ATS, Elewa MAF, et al. 2022. Evaluating the neuroprotective activities of vinpocetine, punicalagin, niacin and vitamin E against behavioural and motor disabilities of manganese-induced Parkinson's disease in Sprague Dawley rats. Biomedicine & Pharmacotherapy 153:113330

doi: 10.1016/j.biopha.2022.113330
[34]

Rogovskii VS. 2022. The Therapeutic Potential of Urolithin A for Cancer Treatment and Prevention. Current Cancer Drug Targets 22(9):717−24

doi: 10.2174/1568009622666220602125343
[35]

Liu CF, Li XL, Zhang ZL, Qiu L, Ding SX, et al. 2019. Antiaging effects of Urolithin A on replicative senescent human skin fibroblasts. Rejuvenation Research 22(3):191−200

doi: 10.1089/rej.2018.2066
[36]

Habashi R, Hacham Y, Dhakarey R, Matityahu I, Holland D, et al. 2019. Elucidating the role of shikimate dehydrogenase in controlling the production of anthocyanins and hydrolysable tannins in the outer peels of pomegranate. BMC Plant Biology 19(1):476

doi: 10.1186/s12870-019-2042-1
[37]

Shen N, Wang T, Gan Q, Liu S, Wang L, et al. 2022. Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry 383:132531

doi: 10.1016/j.foodchem.2022.132531
[38]

Rice-Evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB. 1995. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radical Research 22:375−83

doi: 10.3109/10715769509145649
[39]

Kumar S, Pandey AK. 2013. Chemistry and biological activities of flavonoids: An overview. The Scientific World Journal 2013:162750

doi: 10.1155/2013/162750
[40]

Ma EZ, Khachemoune A. 2023. Flavonoids and their therapeutic applications in skin diseases. Archives of Dermatological Research 315(3):321−31

doi: 10.1007/s00403-022-02395-3
[41]

Sayed S, Alotaibi SS, El-Shehawi AM, Hassan MM, Shukry M, et al. 2022. The anti-inflammatory, anti-apoptotic, and antioxidant effects of a pomegranate-peel extract against acrylamide-induced hepatotoxicity in rats. Life 12(2):224

doi: 10.3390/life12020224
[42]

Xu Y, Wei Z, Xue C, Huang Q. 2022. Covalent modification of zein with polyphenols: a feasible strategy to improve antioxidant activity and solubility. Journal of Food Science 87(7):2965−79

doi: 10.1111/1750-3841.16203
[43]

Rajendran M, Mahalakshmi M, Ramya R, Devapiriam D. 2011. A semi-empirical study of flavone compounds with antioxidant efficiency. African Journal of Pharmacy and Pharmacology 5(19):2140−44

doi: 10.5897/AJPP11.357
[44]

Banihani S, Swedan S, Alguraan Z. 2013. Pomegranate and type 2 diabetes. Nutrition Research 33(5):341−48

doi: 10.1016/j.nutres.2013.03.003
[45]

Mo FF, Lv BH, An T, Miao JN, Liu JX, et al. 2019. Protective mechanism of punicalagin against endoplasmic reticulum stress in the liver of mice with type 2 diabetes mellitus. Journal of Functional Foods 56:57−64

doi: 10.1016/j.jff.2019.03.006
[46]

Zhang Y, Tan X, Cao Y, An X, Chen J, et al. 2022. Punicalagin protects against diabetic liver injury by upregulating mitophagy and antioxidant enzyme activities. Nutrients 14:2782

doi: 10.3390/nu14142782