[1] |
Yang C, Ye Z. 2013. Trichomes as models for studying plant cell differentiation. Cellular and Molecular Life Sciences 70:1937−48 doi: 10.1007/s00018-012-1147-6 |
[2] |
Han G, Li Y, Yang Z, Wang C, Zhang Y, et al. 2022. Molecular Mechanisms of Plant Trichome Development. Frontiers in Plant Science 13:910228 doi: 10.3389/fpls.2022.910228 |
[3] |
Vigneron JP, Rassart M, Vértesy Z, Kertész K, Sarrazin M, et al. 2005. Optical structure and function of the white filamentary hair covering the edelweiss bracts. Physical Review E 71:011906 doi: 10.1103/PhysRevE.71.011906 |
[4] |
Akers CP, Weybrew JA, Long RC. 1978. Ultrastructure of glandular trichomes of leaves of Nicotiana tabacum L., cv Xanthi. American Journal of Botany 65:282−92 doi: 10.2307/2442269 |
[5] |
Werker E. 2000. Trichome diversity and development. In Advances in Botanical Research, ed. Preston RD. Vol. 31. New York, United States: Academic Press. pp. 1−35. doi: 10.1016/s0065-2296(00)31005-9 |
[6] |
Tan HX, Xiao L, Zhou Z, Zhang L, Chen WS. 2017. Molecular mechanism of artemisinin biosynthesis and regulation in Artemisia annua. Zhongguo Zhong Yao Za Zhi 42:10−19 doi: 10.19540/j.cnki.cjcmm.20161222.019 |
[7] |
Hancock J, Livingston SJ, Samuels L. 2024. Building a biofactory: Constructing glandular trichomes in Cannabis sativa. Current Opinion in Plant Biology 80:102549 doi: 10.1016/j.pbi.2024.102549 |
[8] |
Liu R, Wang Y, Liang C, Zheng Z, Du X, et al. 2023. Morphology and mass spectrometry-based chemical profiling of peltate glandular trichomes on Mentha haplocalyx Briq leaves. Food Research International 164:112323 doi: 10.1016/j.foodres.2022.112323 |
[9] |
Guo J, Yuan Y, Liu Z, Zhu J. 2013. Development and structure of internal glands and external glandular trichomes in Pogostemon cablin. PLoS ONE 8:e77862 doi: 10.1371/journal.pone.0077862 |
[10] |
Zhou P, Yin M, Dai S, Bao K, Song C, et al. 2021. Multi-omics analysis of the bioactive constituents biosynthesis of glandular trichome in Perilla frutescens. BMC Plant Biology 21:277 doi: 10.1186/s12870-021-03069-4 |
[11] |
Wu ML, Cui YC, Ge L, Cui LP, Xu ZC, et al. 2020. NbCycB2 represses Nbwo activity via a negative feedback loop in tobacco trichome development. Journal of Experimental Botany 71:1815−27 doi: 10.1093/jxb/erz542 |
[12] |
Roka L, Koudounas K, Daras G, Zoidakis J, Vlahou A, et al. 2018. Proteome of olive non-glandular trichomes reveals protective protein network against (a)biotic challenge. Journal of Plant Physiology 231:210−18 doi: 10.1016/j.jplph.2018.09.016 |
[13] |
Walford S-A, Wu Y, Llewellyn DJ, Dennis ES. 2012. Epidermal cell differentiation in cotton mediated by the homeodomain leucine zipper gene, GhHD-1. The Plant Journal 71:464−78 doi: 10.1111/j.1365-313X.2012.05003.x |
[14] |
Perazza D, Herzog M, Hülskamp M, Brown S, Dorne AM, et al. 1999. Trichome cell growth in Arabidopsis thaliana can be derepressed by mutations in at least five genes. Genetics 152:461−76 doi: 10.1093/genetics/152.1.461 |
[15] |
Lange BM. 2015. The evolution of plant secretory structures and emergence of terpenoid chemical diversity. Annual Review of Plant Biology 66:139−59 doi: 10.1146/annurev-arplant-043014-114639 |
[16] |
Schuurink R, Tissier A. 2020. Glandular trichomes: micro-organs with model status? New Phytologist 225:2251−66 doi: 10.1111/nph.16283 |
[17] |
Liu Y, Jing S-X, Luo S-H, Li S-H. 2019. Non-volatile natural products in plant glandular trichomes: chemistry, biological activities and biosynthesis. Natural Product Reports 36:626−65 doi: 10.1039/C8NP00077H |
[18] |
Livingston SJ, Quilichini TD, Booth JK, Wong DCJ, Rensing KH, et al. 2020. Cannabis glandular trichomes alter morphology and metabolite content during flower maturation. The Plant Journal: For Cell and Molecular Biology 101:37−56 doi: 10.1111/tpj.14516 |
[19] |
Chinese Pharmacopoeia Commission. 2020. Chinese pharmacopoeia. Beijing: China Medical Science and Technology Press. 207 pp. |
[20] |
Duke SO, Paul RN. 1993. Development and Fine Structure of the Glandular Trichomes of Artemisia annua L. International Journal of Plant Sciences 154:107−18 doi: 10.1086/297096 |
[21] |
Dong B, Li S, Wang X, Fang S, Li J, et al. 2023. Integrated analysis of transcriptome, small RNA, and phytohormonal content changes between Artemisia annua Linn. and Nicotiana benthamiana Domin in heterogeneous grafting. Medicinal Plant Biology 2:2 doi: 10.48130/MPB-2023-0002 |
[22] |
Chang S, Li Q, Huang B, Chen W, Tan H. 2023. Genome-wide identification and characterisation of bHLH transcription factors in Artemisia annua. BMC Plant Biology 23:63 doi: 10.1186/s12870-023-04063-8 |
[23] |
Judd R, Bagley MC, Li M, Zhu Y, Lei C, et al. 2019. Artemisinin biosynthesis in non-glandular trichome cells of Artemisia annua. Molecular Plant 12:704−14 doi: 10.1016/j.molp.2019.02.011 |
[24] |
Van Noorden R. 2010. Demand for malaria drug soars. Nature 466:672−73 doi: 10.1038/466672a |
[25] |
Kim WS, Choi WJ, Lee S, Kim WJ, Lee DC, et al. 2015. Anti-inflammatory, antioxidant and antimicrobial effects of artemisinin extracts from Artemisia annua L. The Korean Journal of Physiology & Pharmacology 19:21−27 doi: 10.4196/kjpp.2015.19.1.21 |
[26] |
Liu H, Li Z, Zhang Y, Jia L, Cai M, et al. 2023. Antiviral effects of artemisinin and its derivatives. Chinese Medical Journal 136:2993−95 doi: 10.1097/CM9.0000000000002934 |
[27] |
Luo H, Vong CT, Chen H, Gao Y, Lyu P, et al. 2019. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chinese Medicine 14:48 doi: 10.1186/s13020-019-0270-9 |
[28] |
Liu X, Wang X, Pan Y, Zhao L, Sun S, et al. 2021. Artemisinin improves acetylcholine-induced vasodilatation in rats with primary hypertension. Drug Design, Development and Therapy 15:4489−502 doi: 10.2147/DDDT.S330721 |
[29] |
Liu Y, Jiang JJ, Du SY, Mu LS, Fan JJ, et al. 2024. Artemisinins ameliorate polycystic ovarian syndrome by mediating LONP1-CYP11A1 interaction. Science 384:eadk5382 doi: 10.1126/science.adk5382 |
[30] |
Abdin MZ, Israr M, Rehman RU, Jain SK. 2003. Artemisinin, a novel antimalarial drug: biochemical and molecular approaches for enhanced production. Planta Medica 69:289−99 doi: 10.1055/s-2003-38871 |
[31] |
Ferreira JFS, Janick J. 1995. Floral morphology of Artemisia annua with special reference to trichomes. International Journal of Plant Sciences 156:807−15 doi: 10.1086/297304 |
[32] |
Tang Y, Xiang L, Zhang F, Tang K, Liao Z. 2023. Metabolic regulation and engineering of artemisinin biosynthesis in A. annua. Medicinal Plant Biology 2:4 doi: 10.48130/MPB-2023-0004 |
[33] |
Olofsson L, Engström A, Lundgren A, Brodelius PE. 2011. Relative expression of genes of terpene metabolism in different tissues of Artemisia annua L. BMC Plant Biology 11:45 doi: 10.1186/1471-2229-11-45 |
[34] |
Yan T, Chen M, Shen Q, Li L, Fu X, et al. 2017. HOMEODOMAIN PROTEIN 1 is required for jasmonate-mediated glandular trichome initiation in Artemisia annua. New Phytologist 213:1145−55 doi: 10.1111/nph.14205 |
[35] |
Olsson ME, Olofsson LM, Lindahl AL, Lundgren A, Brodelius M, et al. 2009. Localization of enzymes of artemisinin biosynthesis to the apical cells of glandular secretory trichomes of Artemisia annua L. Phytochemistry 70:1123−28 doi: 10.1016/j.phytochem.2009.07.009 |
[36] |
Duke MV, Paul RN, Elsohly HN, Sturtz G, Duke SO. 1994. Localization of artemisinin and artemisitene in foliar tissues of glanded and glandless biotypes of Artemisia annua L. International Journal of Plant Sciences 155:365−72 doi: 10.1086/297173 |
[37] |
Yadav RK, Sangwan RS, Srivastava AK, Sangwan NS. 2017. Prolonged exposure to salt stress affects specialized metabolites-artemisinin and essential oil accumulation in Artemisia annua L.: metabolic acclimation in preferential favour of enhanced terpenoid accumulation accompanying vegetative to reproductive phase transition. Protoplasma 254:505−22 doi: 10.1007/s00709-016-0971-1 |
[38] |
Tan H, Xiao L, Gao S, Li Q, Chen J, et al. 2015. TRICHOME AND ARTEMISININ REGULATOR 1 is required for trichome development and artemisinin biosynthesis in Artemisia annua. Molecular Plant 8:1396−411 doi: 10.1016/j.molp.2015.04.002 |
[39] |
Zhong S, Wu S, Wang L, Su X, Zhang B. 2023. Advances in molecular mechanisms of plant trichomes. Molecular Plant Breeding 21:7215−24 doi: 10.13271/j.mpb.021.007215 |
[40] |
Matías-Hernández L, Jiang W, Yang K, Tang K, Brodelius PE, et al. 2017. AaMYB1 and its orthologue AtMYB61 affect terpene metabolism and trichome development in Artemisia annua and Arabidopsis thaliana. The Plant Journal 90:520−34 doi: 10.1111/tpj.13509 |
[41] |
Xie L, Yan T, Li L, Chen M, Hassani D, et al. 2021. An HD-ZIP-MYB complex regulates glandular secretory trichome initiation in Artemisia annua. New Phytologist 231:2050−64 doi: 10.1111/nph.17514 |
[42] |
Qin W, Xie L, Li Y, Liu H, Fu X, et al. 2021. An R2R3-MYB transcription factor positively regulates the glandular secretory trichome initiation in Artemisia annua L. Frontiers in Plant Science 12:657156 doi: 10.3389/fpls.2021.657156 |
[43] |
Shi P, Fu X, Shen Q, Liu M, Pan Q, et al. 2018. The roles of AaMIXTA1 in regulating the initiation of glandular trichomes and cuticle biosynthesis in Artemisia annua. New Phytologist 217:261−76 doi: 10.1111/nph.14789 |
[44] |
Lv Z, Li J, Qiu S, Qi F, Su H, et al. 2022. The transcription factors TLR1 and TLR2 negatively regulate trichome density and artemisinin levels in Artemisia annua. Journal of Integrative Plant Biology 64:1212−28 doi: 10.1111/jipb.13258 |
[45] |
Dong B, Xu Z, Wang X, Li J, Xiao Y, et al. 2024. TrichomeLess Regulator 3 is required for trichome initial and cuticle biosynthesis in Artemisia annua. Molecular Horticulture 4:10 doi: 10.1186/s43897-024-00085-4 |
[46] |
Zhou Z, Tan H, Li Q, Li Q, Wang Y, et al. 2020. TRICHOME AND ARTEMISININ REGULATOR 2 positively regulates trichome development and artemisinin biosynthesis in Artemisia annua. New Phytologist 228:932−45 doi: 10.1111/nph.16777 |
[47] |
Liu H, He W, Yao X, Yan X, Wang X, et al. 2023. The light- and jasmonic acid-induced AaMYB108-like positive regulates the initiation of glandular secretory trichome in Artemisia annua L. International Journal of Molecular Sciences 24:12929 doi: 10.3390/ijms241612929 |
[48] |
Yan T, Li L, Xie L, Chen M, Shen Q, et al. 2018. A novel HD‐ZIP IV/MIXTA complex promotes glandular trichome initiation and cuticle development in Artemisia annua. New Phytologist 218:567−78 doi: 10.1111/nph.15005 |
[49] |
Wang C, Chen T, Li Y, Liu H, Qin W, et al. 2023. AaWIN1, an AP2/ERF protein, positively regulates glandular secretory trichome initiation in Artemisia annua. Plant Science 329:111602 doi: 10.1016/j.plantsci.2023.111602 |
[50] |
He Y, Fu X, Li L, Sun X, Tang K, et al. 2022. AaSPL9 affects glandular trichomes initiation by positively regulating expression of AaHD1 in Artemisia annua L. Plant Science 317:111172 doi: 10.1016/j.plantsci.2021.111172 |
[51] |
Xie L, Yan T, Li L, Chen M, Ma Y, et al. 2021. The WRKY transcription factor AaGSW2 promotes glandular trichome initiation in Artemisia annua. Journal of Experimental Botany 72:1691−701 doi: 10.1093/jxb/eraa523 |
[52] |
Wang Y, Fu X, Xie L, Qin W, Li L, et al. 2019. Stress associated protein 1 regulates the development of glandular trichomes in Artemisia annua. Plant Cell, Tissue and Organ Culture 139:249−59 doi: 10.1007/s11240-019-01677-5 |
[53] |
Chen TT, Liu H, Li YP, Yao XH, Qin W, et al. 2023. AaSEPALLATA1 integrates jasmonate and light-regulated glandular secretory trichome initiation in Artemisia annua. Plant Physiology 192:1483−97 doi: 10.1093/plphys/kiad113 |
[54] |
Kayani SI, Shen Q, Ma Y, Fu X, Xie L, et al. 2019. The YABBY Family Transcription Factor AaYABBY5 Directly Targets Cytochrome P450 Monooxygenase (CYP71AV1) and Double-Bond Reductase 2 (DBR2) Involved in Artemisinin Biosynthesis in Artemisia Annua. Frontiers in Plant Science 10:1084 doi: 10.3389/fpls.2019.01084 |
[55] |
Ahmad Khan R, Mohammad, Kumar A, Abbas N. 2024. AaGL3-like is jasmonate-induced bHLH transcription factor that positively regulates trichome density in Artemisia annua. Gene 904:148213 doi: 10.1016/j.gene.2024.148213 |
[56] |
Maes L, Van Nieuwerburgh FCW, Zhang Y, Reed DW, Pollier J, et al. 2011. Dissection of the phytohormonal regulation of trichome formation and biosynthesis of the antimalarial compound artemisinin in Artemisia annua plants. New Phytologist 189:176−89 doi: 10.1111/j.1469-8137.2010.03466.x |
[57] |
Lu X, Zhang F, Shen Q, Jiang W, Pan Q, et al. 2014. Overexpression of allene oxide cyclase improves the biosynthesis of artemisinin in Artemisia annua L. PLoS ONE 9:e91741 doi: 10.1371/journal.pone.0091741 |
[58] |
Chen R, Bu Y, Ren J, Pelot KA, Hu X, et al. 2021. Discovery and modulation of diterpenoid metabolism improves glandular trichome formation, artemisinin production and stress resilience in Artemisia annua. The New Phytologist 230:2387−403 doi: 10.1111/nph.17351 |
[59] |
Zehra A, Choudhary S, Wani KI, Naeem M, Khan MMA, Aftab T. 2020. Exogenous abscisic acid mediates ROS homeostasis and maintains glandular trichome to enhance artemisinin biosynthesis in Artemisia annua under copper toxicity. Plant Physiology and Biochemistry 156:125−34 doi: 10.1016/j.plaphy.2020.08.048 |
[60] |
Guo Z, Hao K, Lv Z, Yu L, Bu Q, et al. 2023. Profiling of phytohormone-specific microRNAs and characterization of the miR160-ARF1 module involved in glandular trichome development and artemisinin biosynthesis in Artemisia annua. Plant Biotechnology Journal 21:591−605 doi: 10.1111/pbi.13974 |
[61] |
Cao J, Chen Z, Wang L, Yan N, Lin J, et al. 2024. Graphene enhances artemisinin production in the traditional medicinal plant Artemisia annua via dynamic physiological processes and miRNA regulation. Plant Communications 5:100742 doi: 10.1016/j.xplc.2023.100742 |
[62] |
Goyal P, Devi R, Verma B, Hussain S, Arora P, et al. 2023. WRKY transcription factors: evolution, regulation, and functional diversity in plants. Protoplasma 260:331−48 doi: 10.1007/s00709-022-01794-7 |
[63] |
Liu H, Li L, Fu X, Li Y, Chen T, et al. 2023. AaMYB108 is the core factor integrating light and jasmonic acid signaling to regulate artemisinin biosynthesis in Artemisia annua. New Phytologist 237:2224−37 doi: 10.1111/nph.18702 |
[64] |
Dong B, Wang X, Jiang R, Fang S, Li J, et al. 2021. AaCycTL regulates cuticle and trichome development in Arabidopsis and Artemisia annua L. Frontiers in Plant Science 12:808283 doi: 10.3389/fpls.2021.808283 |
[65] |
Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, et al. 1999. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126:4117−28 doi: 10.1242/dev.126.18.4117 |
[66] |
Kayani SI, Shen Q, Rahman SU, Fu X, Li Y, et al. 2021. Transcriptional regulation of flavonoid biosynthesis in Artemisia annua by AaYABBY5. Horticulture Research 8:257 doi: 10.1038/s41438-021-00693-x |
[67] |
Liu S, Tian N, Li J, Huang J, Liu Z. 2009. Isolation and identification of novel genes involved in artemisinin production from flowers of Artemisia annua using suppression subtractive hybridization and metabolite analysis. Planta Medica 75:1542−47 doi: 10.1055/s-0029-1185809 |
[68] |
Zhang Y, Berman A, Shani E. 2023. Plant hormone transport and localization: signaling molecules on the move. Annual Review of Plant Biology 74:453−79 doi: 10.1146/annurev-arplant-070722-015329 |
[69] |
Wasternack C. 2014. Action of jasmonates in plant stress responses and development-applied aspects. Biotechnology Advances 32:31−39 doi: 10.1016/j.biotechadv.2013.09.009 |
[70] |
Yadav RK, Sangwan RS, Sabir F, Srivastava AK, Sangwan NS. 2014. Effect of prolonged water stress on specialized secondary metabolites, peltate glandular trichomes, and pathway gene expression in Artemisia annua L. Plant Physiology and Biochemistry 74:70−83 doi: 10.1016/j.plaphy.2013.10.023 |
[71] |
Rai R, Pandey S, Rai SP. 2011. Arsenic-induced changes in morphological, physiological, and biochemical attributes and artemisinin biosynthesis in Artemisia annua, an antimalarial plant. Ecotoxicology 20:1900−13 doi: 10.1007/s10646-011-0728-8 |
[72] |
Wani KI, Naeem M, Khan MMA, Aftab T. 2023. Insights into strigolactone (GR24) mediated regulation of cadmium-induced changes and ROS metabolism in Artemisia annua. Journal of Hazardous Materials 448:130899 doi: 10.1016/j.jhazmat.2023.130899 |
[73] |
Wani KI, Naeem M, Khan MMA, Aftab T. 2023. Nitric oxide induces antioxidant machinery, PSII functioning and artemisinin biosynthesis in Artemisia annua under cadmium stress. Plant Science 334:111754 doi: 10.1016/j.plantsci.2023.111754 |
[74] |
Kapoor R, Chaudhary V, Bhatnagar AK. 2007. Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza 17:581−87 doi: 10.1007/s00572-007-0135-4 |
[75] |
Tellez MR, Canel C, Rimando AM, Duke SO. 1999. Differential accumulation of isoprenoids in glanded and glandless Artemisia annua L. Phytochemistry 52:1035−40 doi: 10.1016/S0031-9422(99)00308-8 |
[76] |
Towler MJ, Weathers PJ. 2007. Evidence of artemisinin production from IPP stemming from both the mevalonate and the nonmevalonate pathways. Plant Cell Reports 26:2129−36 doi: 10.1007/s00299-007-0420-x |
[77] |
Ram M, Khan MA, Jha P, Khan S, Kiran U, et al. 2010. HMG-CoA reductase limits artemisinin biosynthesis and accumulation in Artemisia annua L. plants. Acta Physiologiae Plantarum 32:859−66 doi: 10.1007/s11738-010-0470-5 |
[78] |
Dubey VS, Bhalla R, Luthra R. 2003. An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants. Journal of Biosciences 28:637−46 doi: 10.1007/BF02703339 |
[79] |
Schramek N, Wang H, Römisch-Margl W, Keil B, Radykewicz T, et al. 2010. Artemisinin biosynthesis in growing plants of Artemisia annua. A 13CO2 study. Phytochemistry 71:179−87 doi: 10.1016/j.phytochem.2009.10.015 |
[80] |
Bouwmeester HJ, Wallaart TE, Janssen MH, van Loo B, Jansen BJ, et al. 1999. Amorpha-4, 11-diene synthase catalyses the first probable step in artemisinin biosynthesis. Phytochemistry 52:843−54 doi: 10.1016/S0031-9422(99)00206-X |
[81] |
Wallaart TE, Bouwmeester HJ, Hille J, Poppinga L, Maijers NC. 2001. Amorpha-4,11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin. Planta 212(3):460−65 doi: 10.1007/s004250000428 |
[82] |
Mercke P, Bengtsson M, Bouwmeester HJ, Posthumus MA, Brodelius PE. 2000. Molecular cloning, expression, and characterization of amorpha-4,11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L. Archives of Biochemistry and Biophysics 381:173−80 doi: 10.1006/abbi.2000.1962 |
[83] |
Wallaart TE, Pras N, Quax WJ. 1999. Isolation and identification of dihydroartemisinic acid hydroperoxide from Artemisia annua: A novel biosynthetic precursor of artemisinin. Journal of Natural Products 62:1160−62 doi: 10.1021/np9900122 |
[84] |
Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, et al. 2006. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940−43 doi: 10.1038/nature04640 |
[85] |
Teoh KH, Polichuk DR, Reed DW, Nowak G, Covello PS. 2006. Artemisia annua L. (Asteraceae) trichome‐specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin. FEBS Letters 580:1411−16 doi: 10.1016/j.febslet.2006.01.065 |
[86] |
Teoh KH, Polichuk DR, Reed DW, Covello PS. 2009. Molecular cloning of an aldehyde dehydrogenase implicated in artemisinin biosynthesis in Artemisia annua. Botany 87:635−42 doi: 10.1139/B09-032 |
[87] |
Zhang Y, Teoh KH, Reed DW, Maes L, Goossens A, et al. 2008. The Molecular Cloning of Artemisinic Aldehyde Δ11(13) Reductase and Its Role in Glandular Trichome-dependent Biosynthesis of Artemisinin in Artemisia annua. Journal of Biological Chemistry 283:21501−08 doi: 10.1074/jbc.M803090200 |
[88] |
Brown GD, Sy LK. 2007. In vivo transformations of artemisinic acid in Artemisia annua plants. Tetrahedron 63:9548−66 doi: 10.1016/j.tet.2007.06.062 |
[89] |
Brown GD, Sy LK. 2004. In vivo transformations of dihydroartemisinic acid in Artemisia annua plants. Tetrahedron 60:1139−59 doi: 10.1016/j.tet.2003.11.070 |
[90] |
Wu T, Wang Y, Guo D. 2012. Investigation of glandular trichome proteins in Artemisia annua L. using comparative proteomics. PLoS ONE 7:e41822 doi: 10.1371/journal.pone.0041822 |
[91] |
Rydén AM, Ruyter-Spira C, Quax W, Osada H, Muranaka T, et al. 2010. The Molecular Cloning of Dihydroartemisinic Aldehyde Reductase and its Implication in Artemisinin Biosynthesis in Artemisia annua. Planta Medica 76:1778−83 doi: 10.1055/s-0030-1249930 |
[92] |
Polichuk DR, Zhang Y, Reed DW, Schmidt JF, Covello PS. 2010. A glandular trichome-specific monoterpene alcohol dehydrogenase from Artemisia annua. Phytochemistry 71:1264−69 doi: 10.1016/j.phytochem.2010.04.026 |
[93] |
Ding S, Chen X, Shen K. 2020. Single-cell RNA sequencing in breast cancer: Understanding tumor heterogeneity and paving roads to individualized therapy. Cancer Communications 40:329−44 doi: 10.1002/cac2.12078 |
[94] |
Song Q, Ando A, Jiang N, Ikeda Y, Chen ZJ. 2020. Single-cell RNA-seq analysis reveals ploidy-dependent and cell-specific transcriptome changes in Arabidopsis female gametophytes. Genome Biology 21:178 doi: 10.1186/s13059-020-02094-0 |
[95] |
Zhou P, Chen H, Dang J, Shi Z, Shao Y, et al. 2022. Single-cell transcriptome of Nepeta tenuifolia leaves reveal differentiation trajectories in glandular trichomes. Frontiers in Plant Science 13:988594 doi: 10.3389/fpls.2022.988594 |