[1] |
He X, Chen L, Pu Y, Wang H, Cao J, et al. 2023. Fruit and vegetable polyphenols as natural bioactive inhibitors of pancreatic lipase and cholesterol esterase: Inhibition mechanisms, polyphenol influences, application challenges. Food Bioscience 55:103054 doi: 10.1016/j.fbio.2023.103054 |
[2] |
Huang R, Zhang Y, Shen S, Zhi Z, Cheng H, et al. 2020. Antioxidant and pancreatic lipase inhibitory effects of flavonoids from different citrus peel extracts: an in vitro study. Food Chemistry 326:126785 doi: 10.1016/j.foodchem.2020.126785 |
[3] |
Zeng X, Du Z, Ding X, Jiang W. 2020. Characterization of the direct interaction between apple condensed tannins and cholesterol in vitro. Food Chemistry 309:125762 doi: 10.1016/j.foodchem.2019.125762 |
[4] |
Chen L, He X, Pu Y, Wang H, Cao J, et al. 2024. Adsorption removal properties of β-cyclodextrin-modified pectin on cholesterol and sodium cholate. Food Chemistry 430:137059 doi: 10.1016/j.foodchem.2023.137059 |
[5] |
Li X, Jiang H, Pu Y, Cao J, Jiang W. 2019. Inhibitory Effect of Condensed Tannins from Banana Pulp on Cholesterol Esterase and Mechanisms of Interaction. Journal of Agricultural and Food Chemistry 67(51):14066−73 doi: 10.1021/acs.jafc.9b05212 |
[6] |
Chen L, He X, Pu Y, Cao J, Jiang W. 2023. Polysaccharide-based biosorbents for cholesterol and bile salts in gastric-intestinal passage: Advances and future trends. Comprehensive Reviews in Food Science and Food Safety 22(5):3790−813 doi: 10.1111/1541-4337.13214 |
[7] |
Paraskevas KI, Gloviczki P, Antignani PL, Comerota AJ, Dardik A, et al. 2022. Benefits and drawbacks of statins and non-statin lipid lowering agents in carotid artery disease. Progress in Cardiovascular Diseases 73:41−47 doi: 10.1016/j.pcad.2022.05.003 |
[8] |
Zheng Y, Xu B, Shi P, Tian H, Li Y, et al. 2022. The influences of acetylation, hydroxypropylation, enzymatic hydrolysis and crosslinking on improved adsorption capacities and in vitro hypoglycemic properties of millet bran dietary fibre. Food Chemistry 368:130883 doi: 10.1016/j.foodchem.2021.130883 |
[9] |
Zhu WW, Zhang Y, Tang CH. 2023. Maximizing cholesterol-lowering benefits of soy protein isolate by glycation with soy soluble polysaccharide. Food Hydrocolloids 135:108131 doi: 10.1016/j.foodhyd.2022.108131 |
[10] |
Yoshie-Stark Y, Wäsche A. 2004. In vitro binding of bile acids by lupin protein isolates and their hydrolysates. Food Chemistry 88(2):179−84 doi: 10.1016/j.foodchem.2004.01.033 |
[11] |
Li X, Jiao W, Zhang W, Xu Y, Cao J, et al. 2019. Characterizing the interactions of dietary condensed tannins with bile salts. Journal of Agricultural and Food Chemistry 67(34):9543−50 doi: 10.1021/acs.jafc.9b03985 |
[12] |
Huang YL, Ma YS, Tsai YH, Chang SKC. 2019. In vitro hypoglycemic, cholesterol-lowering and fermentation capacities of fiber-rich orange pomace as affected by extrusion. International Journal of Biological Macromolecules 124:796−801 doi: 10.1016/j.ijbiomac.2018.11.249 |
[13] |
Khorasani AC, Kouhfar F, Shojaosadati SA. 2021. Pectin/lignocellulose nanofibers/chitin nanofibers bionanocomposite as an efficient biosorbent of cholesterol and bile salts. Carbohydrate Polymers 261:117883 doi: 10.1016/j.carbpol.2021.117883 |
[14] |
Chen L, Pu Y, Xu Y, He X, Cao J, et al. 2022. Anti-diabetic and anti-obesity: Efficacy evaluation and exploitation of polyphenols in fruits and vegetables. Food Research International 157:111202 doi: 10.1016/j.foodres.2022.111202 |
[15] |
He X, Pu Y, Chen L, Jiang H, Xu Y, et al. 2023. A comprehensive review of intelligent packaging for fruits and vegetables: Target responders, classification, applications, and future challenges. Comprehensive Reviews in Food Science and Food Safety 22(2):842−81 doi: 10.1111/1541-4337.13093 |
[16] |
Ngamukote S, Mäkynen K, Thilawech T, Adisakwattana S. 2011. Cholesterol-lowering activity of the major polyphenols in grape seed. Molecules 16(6):5054−61 doi: 10.3390/molecules16065054 |
[17] |
Padilla-Camberos E, Flores-Fernandez JM, Fernandez-Flores O, Gutierrez-Mercado Y, Carmona-de la Luz J, et al. 2015. Hypocholesterolemic effect and in vitro pancreatic lipase inhibitory activity of an opuntia ficus-indica extract. BioMed Research International 2015:e837452 doi: 10.1155/2015/837452 |
[18] |
Chamnansilpa N, Aksornchu P, Adisakwattana S, Thilavech T, Mäkynen K, et al. 2020. Anthocyanin-rich fraction from Thai berries interferes with the key steps of lipid digestion and cholesterol absorption. Heliyon 6(11):e05408 doi: 10.1016/j.heliyon.2020.e05408 |
[19] |
Galvis Sánchez AC, Gil-Izquierdo A, Gil MI. 2003. Comparative study of six pear cultivars in terms of their phenolic and vitamin C contents and antioxidant capacity. Journal of the Science of Food and Agriculture 83(10):995−1003 doi: 10.1002/jsfa.1436 |
[20] |
Li X, Wang T, Zhou B, Gao W, Cao J, et al. 2014. Chemical composition and antioxidant and anti-inflammatory potential of peels and flesh from 10 different pear varieties (Pyrus spp.). Food Chemistry 152:531−38 doi: 10.1016/j.foodchem.2013.12.010 |
[21] |
Wang H, Zhang Y, Pu Y, Chen L, He X, et al. 2023. Composite coating of guar gum with salicylic acid alleviates the quality deterioration of vibration damage in 'Huangguan' pear fruit through the regulation of antioxidant metabolism. Postharvest Biology and Technology 205:112476 doi: 10.1016/j.postharvbio.2023.112476 |
[22] |
Jiménez-Aspee F, Theoduloz C, Gómez-Alonso S, Hermosín-Gutiérrez I, Reyes M, et al. 2018. Polyphenolic profile and antioxidant activity of meristem and leaves from "chagual" (Puya chilensis Mol.), a salad from central Chile. Food Research International 114:90−96 doi: 10.1016/j.foodres.2018.07.051 |
[23] |
Zhang HL, Wu QX, Wei X, Qin XM. 2020. Pancreatic lipase and cholesterol esterase inhibitory effect of Camellia nitidissima Chi flower extracts in vitro and in vivo. Food Bioscience 37:100682 doi: 10.1016/j.fbio.2020.100682 |
[24] |
Kartal F, Denizli A. 2020. Molecularly imprinted cryogel beads for cholesterol removal from milk samples. Colloids and Surfaces B: Biointerfaces 190:110860 doi: 10.1016/j.colsurfb.2020.110860 |
[25] |
Shariful MI, Sharif SB, Lee JJL, Habiba U, Ang BC, et al. 2017. Adsorption of divalent heavy metal ion by mesoporous-high surface area chitosan/poly (ethylene oxide) nanofibrous membrane. Carbohydrate Polymers 157:57−64 doi: 10.1016/j.carbpol.2016.09.063 |
[26] |
Pu Y, Chen L, He X, Cao J, Jiang W. 2023. Soluble polysaccharides decrease inhibitory activity of banana condensed tannins against porcine pancreatic lipase. Food Chemistry 418:136013 doi: 10.1016/j.foodchem.2023.136013 |
[27] |
Dolphen R, Thiravetyan P. 2011. Adsorption of melanoidins by chitin nanofibers. Chemical Engineering Journal 166(3):890−95 doi: 10.1016/j.cej.2010.11.063 |
[28] |
Li S, Hu X, Pan J, Gong D, Zhang G. 2021. Mechanistic insights into the inhibition of pancreatic lipase by apigenin: Inhibitory interaction, conformational change and molecular docking studies. Journal of Molecular Liquids 335:116505 doi: 10.1016/j.molliq.2021.116505 |
[29] |
Cui T, Nakamura K, Ma L, Li JZ, Kayahara H. 2005. Analyses of Arbutin and Chlorogenic Acid, the Major Phenolic Constituents in Oriental Pear. Journal of Agricultural and Food Chemistry 53(10):3882−87 doi: 10.1021/jf047878k |
[30] |
Lin LZ, Harnly JM. 2008. Phenolic Compounds and Chromatographic Profiles of Pear Skins (Pyrus spp.). Journal of Agricultural and Food Chemistry 56(19):9094−101 doi: 10.1021/jf8013487 |
[31] |
Oluwajuyitan TD, Ijarotimi OS, Fagbemi TN. 2022. Plantain-based dough meal: Nutritional property, antioxidant activity and dyslipidemia ameliorating potential in high-fat-induced rats. Food Frontiers 3(3):489−504 doi: 10.1002/fft2.133 |
[32] |
Tang B, Huang Y, Ma X, Liao X, Wang Q, et al. 2016. Multispectroscopic and docking studies on the binding of chlorogenic acid isomers to human serum albumin: Effects of esteryl position on affinity. Food Chemistry 212:434−42 doi: 10.1016/j.foodchem.2016.06.007 |
[33] |
Ikeda I, Kobayashi M, Hamada T, Tsuda K, Goto H, et al. 2003. Heat-epimerized tea catechins rich in gallocatechin gallate and catechin gallate are more effective to inhibit cholesterol absorption than tea catechins rich in epigallocatechin gallate and epicatechin gallate. Journal of Agricultural and Food Chemistry 51(25):7303−7 doi: 10.1021/jf034728l |
[34] |
Luo X, Wang Q, Zheng B, Lin L, Chen B, et al. 2017. Hydration properties and binding capacities of dietary fibers from bamboo shoot shell and its hypolipidemic effects in mice. Food and Chemical Toxicology 109:1003−9 doi: 10.1016/j.fct.2017.02.029 |
[35] |
Wu W, Hu J, Gao H, Chen H, Fang X, Mu H, et al. 2020. The potential cholesterol-lowering and prebiotic effects of bamboo shoot dietary fibers and their structural characteristics. Food Chemistry 332:127372 doi: 10.1016/j.foodchem.2020.127372 |
[36] |
Kobayashi M, Nishizawa M, Inoue N, Hosoya T, Yoshida M, et al. 2016. Epigallocatechin gallate decreases the micellar solubility of cholesterol via specific interaction with phosphatidylcholine. Journal of Agricultural and Food Chemistry 62(13):2881−90 doi: 10.1021/jf405591g |
[37] |
Vermeer MA, Mulder TPJ, Molhuizen HOF. 2008. Theaflavins from black tea, especially theaflavin-3-gallate, reduce the incorporation of cholesterol into mixed micelles. Journal of Agricultural and Food Chemistry 56(24):12031−36 doi: 10.1021/jf8022035 |
[38] |
Li X, Pu Y, Xu Y, Cao J, Jiang W. 2021. Potential hypolipidemic effects of banana condensed tannins through the interaction with digestive juice components related to lipid digestion. Journal of Agricultural and Food Chemistry 69(31):8703−13 doi: 10.1021/acs.jafc.1c02794 |
[39] |
Vareda JP. 2023. On validity, physical meaning, mechanism insights and regression of adsorption kinetic models. Journal of Molecular Liquids 376:121416 doi: 10.1016/j.molliq.2023.121416 |
[40] |
Guo Q, Xiao X, Lu L, Ai L, Xu M, et al. 2022. Polyphenol–Polysaccharide Complex: Preparation, Characterization, and Potential Utilization in Food and Health. Annual Review of Food Science and Technology 13(1):59−87 doi: 10.1146/annurev-food-052720-010354 |
[41] |
Caruso ÍP, Filho JMB, de Araújo AS, de Souza FP, Fossey MA, et al. 2016. An integrated approach with experimental and computational tools outlining the cooperative binding between 2-phenylchromone and human serum albumin. Food Chemistry 196:935−42 doi: 10.1016/j.foodchem.2015.10.027 |