-
The peel and pulp of freshly picked 'Yali' Pears, 'Huangguan' Pears, and 'Xuehua' Pears (purchased froma fruit market, Beijing, China) were separated, and then frozen in liquid nitrogen and powdered and stored at −20 °C for further use.
Total polyphenol content (TPC), total flavonoid content (TFC)
TPC content
-
Referring to a previous method with minor modifications[21], 1.0 mL of the extraction, 1.0 mL of 10-fold diluted Folin-Ciocalteu reagent, and 3.0 mL of the 7.5% Na2CO3 solution were added and volumed with water to 10 mL. Then, the mixture was placed in a water bath at 70 °C for 1 h while keeping it out of the light, followed by an ice bath for 5 min, and the absorbance value was recorded at 760 nm. Gallic acid (0−150 μg/mL) was used as a reference standard to produce the standard curve. The results were expressed as gallic acid equivalent (mg GAE/100 g FW).
TFC content
-
0.5 mL of 2.2 medium supernatant was taken, 0.4 mL 5% NaNO2 solution was added then shaken well and left to stand for 6 min, then 0.5 mL 10% Al(NO3)3 solution was added, this was then shaken and left to stand for 6 min, 4 mL 4% NaOH was then added and fixed with water to 10ml, shaken well and left to stand for 15 min. Absorbance was detected at 510 nm. With (0−300 μg/mL) catechin as the standard product, the standard curve was drawn, and the total flavonoid content was expressed by mg CAE/g FW, the calculation method was as outlined above.
Antioxidant activities
-
The DPPH free radical scavenging activity assay was based on a previous study[2]. The 3.0 mL of 100 μM DPPH solution (dissolved in ethanol) was mixed with 0.2 mL of diluted pear polyphenol supernatant and allowed to stand at room temperature for 60 min away from light. The absorbance at 517 nm was recorded and the results were expressed as Trolox equivalent (μmol TE/mg FW). Referring to a previous method, the reaction of 0.2 mL of sample solution with 3.0 mL of ABTS working solution was carried out for 10 min at room temperature, protected from light, and then the absorbance was recorded at 734 nm[22]. The results were expressed as Trolox equivalent (μmol TE/mg FW) for ABTS radical scavenging activity. Then, the antioxidant activity of PPEs was also evaluated using Fe3+ and Cu2+ reduction capacities, respectively[21]. The results were all expressed as Trolox equivalents (μmol TE/mg FW).
Finally, IBM SPSS Statistics 24 combined with Pearson's correlation coefficient were employed to analyze the correlation between the antioxidant activity of PPEs and their TPC, TFC.
Determination of cholesterol and cholate binding capacity in vitro
Cholesterol micelle solubility inhibition rate
-
Following a previous method[23], oleic acid, cholesterol, PBS buffer, sodium taurocholate, sodium chloride, and phosphatidylcholine were mixed and sonicated at 25 °C for 30−45 min to mix well, followed by incubation with constant temperature shaking at 37 °C for 24 h. Different concentrations of ARPPE and aRPPE solutions (buffer was used as a blank control) were added to the above micelles, mixed well, and then shaken at 37 °C for 2 h. The mixtures were then centrifuged at 10,000 r/min for 15 min (TGL 16C, Shanghai Anting Scientific Instrument Factory, Shanghai, China), and then analyzed by total cholesterol assay kit (Nanjing, China). Cholesterol concentration in the supernatant was determined using a total cholesterol assay kit (Nanjing Jiancheng Bioengineering Institute, Nanjing, China).
${\rm Cholesterol\; micelle\; solubility\; inhibition\; rate\; ({\text{%}})} = \dfrac{{C}_{0}-C}{{C}_{0}}\times 100{\text{%}} $ (1) where, C0 is the cholesterol concentration of the blank control; C is the cholesterol concentration after adding PPEs.
Cholesterol binding capacity
-
The PPEs solution (0−1 mg/mL) was mixed 1:1 (v/v) with 0.5 mg/mL of cholesterol solution (dissolved in 50 mM pH 7.4 Tris-HCl buffer), and the mixture was subsequently incubated at 37 °C for 2 h[13]. Additionally, the cholesterol-binding capacity under gastrointestinal conditions was briefly simulated: the pH of the above mixture was adjusted to 2.0 and 7.0 with 0.1 mol/L NaOH and 0.1 mol/L HCl. Next, after centrifugation at 10,000 r/min for 15 min, the supernatant was taken and the cholesterol content was determined according to the cholesterol kit operation. Cholesterol binding ability (CBA) was expressed as:
$ \begin{split} & CBA\ =\ \dfrac{C_0-C_1}{C_0}\times 100\text{%}\end{split} $ (2) where, C0 is the cholesterol concentration of blank control, mmol/L; C1 cholesterol concentration after adding PPEs, mmol/L.
The binding amount (Q) of PPEs to cholesterol is expressed as:
$ Q= \dfrac{\left({C}_{0}-{C}_{1}\right)V}{1000\;M }$ (3) where, Q is the binding quantity, mg/g; C0 is the amount of cholesterol before binding, mg/L; C1 is the amount of cholesterol after binding, mg/L; V, M are adsorption volume (L) and sample mass (g), respectively.
Cholate binding capacity
-
First, the 2 mmol/L sodium taurocholate (NaTC) and sodium glycylcholate (NaGC) reserves were prepared in PBS buffer and adjusted to the range considering that the concentration of bile acids in the human body is 1.5−7 mM[10,12]. The PPEs of 0−3 mg/mL were weighed to 2 mL each, respectively, to simply simulate the digestive environment of the gastrointestinal tract. To simulate the gastric environment, 3 mL of 10 mg/mL pepsin solution and 0.1 M HCl were added to adjust the pH to 2.0, and digestion was carried out in a thermostatic oscillatory incubator (120 rpm) at 37 °C for 1 h. Subsequently, to simulate the gastrointestinal environment, 4 mL of 10 mg/mL trypsin solution and 0.1 M NaOH were added to adjust the pH to 6.3, and digestion was carried out in a thermostatic oscillatory incubator at 37 °C. Then, 4 mL of 2 mM NaTC and NaGC were added to the digested PPEs solution, mixed well and incubated in a constant temperature incubator (120 rpm) for 1 h. After centrifugation at 8,000 rpm for 10 min, the supernatant was collected. One mL of the supernatant was mixed with 3 mL of 60 % (w/v) sulfuric acid solution, and the mixture was thoroughly mixed in a water bath at 70 °C for 20 min, then placed quickly in an ice bath for 5 min, and then cooled down to room temperature, the absorbance of the mixture was evaluated at 387 nm. A standard curve was established for determining the concentration of cholate, including a blank control. The cholate binding capacity (%) was expressed by calculating the difference in concentration of the system before and after the addition of PPEs. Similarly, the binding capacity of PPEs to NaTC and NaGC can be expressed by Eqn (3).
Kinetic model fitting
-
The Lagergren pseudo-primary (4) and pseudo-secondary models (5) were applied to analyze the kinetic processes involved in the binding of PPEs to cholesterol, NaTC, and NaGC[4,24].
$ {q}_{t}={q}_{e}(1-{e}^{-{k}_{1}t}) $ (4) $ {q}_{t}=\dfrac{{{q}_{e}}^{2}{k}_{2}t}{1+{q}_{e}{k}_{2}t} $ (5) where, qt (mg/g) represents the binding amount at t (h), qe (mg/g) is the equilibrium adsorption capacity, k1 (H−1) and k2 (g/mg·h) are the rate constants of Lagergren's pseudo-first-order and pseudo-second-order models, respectively.
Isothermal adsorption model fitting
-
Langmuir isotherm Eqn (6) and Freundlich isotherm adsorption Eqn (7) were used to fit the data to quantitatively evaluate the binding mechanism of PPEs on cholesterol, NaTC and NaGC[13,25].
$ \dfrac{1}{{q}_{e}}=\dfrac{1}{{q}_{m}}+\dfrac{1}{{q}_{m}{K}_{L}}\cdot \dfrac{1}{{q}_{e}} $ (6) $ {ln}_{{q}_{e}}={ln}_{{K}_{F}}+\dfrac{1}{n}ln{c}_{e} $ (7) where, qe: equilibrium adsorption capacity, mg/g; Ce: equilibrium concentration, mg/L; 1/n: adsorption index; KL: Langmuir constant; KF: Freundlich constant.
Mechanism investigation of pear polyphenol-cholesterol/cholate binding
Turbidity and Zeta-potentials
-
As previously reported[26], turbidity measurement was carried out using a UV-Vis spectrophotometer to detect absorbance at 600 nm. PPEs (0−2.5 mg/mL) and cholesterol/cholate (1 mg/mL) were combined 1:1 (v/v), and the reaction was shaken for 30 min at 25 °C before being measured. The formula for determining the turbidity of a complex in solution is turbidity = Asample − Abuffer, where A is the sample's absorbance at 600 nm.
The charge-Zeta potential of the PPEs-cholesterol/cholic acid complex system was analyzed by Zetasizer Nano ZS instrument (Malvern Instruments, Malvern, U.K.). The composite system was formed by mixing PPEs (2.5 mg/mL) and cholesterol/cholate (0−5 mg/mL) at 25 °C at 1:1 (v/v) for 30 min.
DLS analysis
-
The particle size of the PPEs-cholesterol/cholates composite system was analyzed by dynamic light scattering (DLS) using a Zetasizer Nano ZS instrument (Malvern Instruments, Malvern, U.K.)[3]. Composite system: PPEs solution (2.0 mg/mL) and cholesterol and cholate solution (0−0.5 mg/mL) were mixed at 1:1 (v/v) for 30 min at 25 °C.
Transmission electron microscopy (TEM)
-
The apparent morphology of PPEs-cholesterol/cholate complexes was observed by TEM with reference to and slight modification of the method by Dolphen & Thiravetyan[27]. A solution of 3.0 mg/mL of PPEs was mixed with 1.0 mg/mL of cholesterol, NaTC, and NaGC 1:1 (v/v), respectively, and incubated at room temperature for 20 min. The PPEs and the mixture were added dropwise onto a carbon film on a 400-mesh copper grating, and then dried for 15 min before observation on the machine.
Fluorescence spectroscopy
-
The effects of cholesterol and cholate on the fluorescence spectra of PPEs solutions were determined with the addition of an exogenous fluorescent probe (1-PyCHO) using an F-4500 fluorescence spectrometer (Hitachi 4500, Tokyo, Japan)[11]. At room temperature, 2.0 mM of 1-PyCHO was mixed with 1.25 mg/mL of PPEs in a 3:1 (v/v) mixture for 20 min, and then different concentrations of cholesterol/cholates (0−2 mM) were mixed with the above mixture in a certain ratio, and the fluorescence spectra of the mixture were determined by centrifuging the supernatant at 8,000 rpm for 15 min after incubation at 37 °C for 60 min. The fluorescence spectrum of the mixture was determined by centrifugation at 8,000 rpm for 15 min. The excitation wavelength was set at 368 nm, and the widths of the emission and excitation slits were set at 5 nm, and the fluorescence spectra were collected at 350−600 nm.
The Stern-Volmer Eqn (8) was used to obtain the following fluorescence quenching parameters:
$ {F}_{0}/F=1+\mathrm{K}\mathrm{s}\mathrm{v}\left[\mathrm{Q}\right] $ (8) Where F0 and F denote the fluorescence intensity of the mixed system without and with PPEs; Ksv is the quenching constant (Ksv = Kqτ0), determined by linear regression of the curve of F0/F vs [Q]; and [Q] is the concentration of the bursting agent.
The binding constant (Ka) and the number of binding sites (n) were calculated by the following equations:
$ \mathrm{log}\left[\dfrac{{F}_{0}-{F}_{1}}{{F}_{1}}\right]=log{K}_{a}+nlog\left[Q\right] $ (9) Analysis of thermodynamic effects
-
Referring to previous methods[2,28], thermodynamic parameters ΔH, ΔS, and ΔG were obtained based on the fluorescence spectral data at different temperatures (298.15, 303.15, and 310.15 K) upon Van't Hoff's Eqn (10) and the thermodynamic Eqn (11), which enabled us to determine the type of binding between duck pear polyphenols and cholesterol and cholates.
$ ln\dfrac{{K}_{2}}{{K}_{1}}=\left(\dfrac{1}{{T}_{1}}-\dfrac{1}{{T}_{2}}\right)\cdot\dfrac{\Delta H}{R} $ (10) $ \Delta G=\Delta H-T\Delta S=-RTln{K}_{a} $ (11) Statistical analysis
-
All results are expressed as mean ± standard deviation. Statistical analysis was performed using IBM SPSS Statistics 24. Univariate analysis of variance (ANOVA) and Duncan test were used to analyze the significance of the data at p < 0.05.
-
All data generated or analyzed during this study are included in this published article and its supplementary information files.
-
About this article
Cite this article
He X, Chen L, Pu Y, Cao J, Jiang W, et al. 2024. Evaluation of cholesterol and cholates binding capacity and mechanism exploration of 'Yali' Pear polyphenol extracts: in vitro. Food Innovation and Advances 3(3): 268−278 doi: 10.48130/fia-0024-0025
Evaluation of cholesterol and cholates binding capacity and mechanism exploration of 'Yali' Pear polyphenol extracts: in vitro
- Received: 07 May 2024
- Revised: 16 July 2024
- Accepted: 20 July 2024
- Published online: 14 August 2024
Abstract: In this study, three representative pears ('Yali' Pear, 'Huangguan' Pear, and 'Xuehua' Pear) peel/flesh polyphenol extracts were characterized by their antioxidant activity, polyphenol composition, and in vitro cholesterol/cholates binding capacity. 'Yali' Pear polyphenol extracts were selected to further investigate the mechanism of in vitro cholesterol/cholates lowering capacity. Lagergren adsorption kinetic and Freundlich isotherm models confirmed the occurrence of this combination. Turbidity, average particle size, transmission electron microscopy, and zeta potential combined confirmed the existence of some interaction between polyphenols and cholesterol/cholates. Cholesterol/cholates quenched the exogenous fluorescence of polyphenols by static mechanism. The thermodynamic interaction results revealed that the interaction between polyphenols and cholesterol is a spontaneous process, primarily driven by hydrogen bonding and hydrophobic interactions. Overall, this study aimed to investigate the confirmation of the binding removal properties of pear polyphenols on cholesterol/cholates to mitigate the adverse health effects of a high-fat diet.
-
Key words:
- Cholesterol /
- Cholates /
- Pear polyphenols /
- Adsorption kinetics /
- Interactions