[1]
|
Zhao Y, Zhang M, Devahastin S, Liu Y. 2019. Progresses on processing methods of umami substances: A review. Trends in Food Science & Technology 93:125−35 doi: 10.1016/j.jpgs.2019.09.012
CrossRef Google Scholar
|
[2]
|
Ikeda K. 2002. New Seasonings. Chemical Senses 27:847−49 doi: 10.1093/chemse/27.9.847
CrossRef Google Scholar
|
[3]
|
Montmayeur J-P, Liberles SD, Matsunami H, Buck LB. 2001. A candidate taste receptor gene near a sweet taste locus. Nature Neuroscience 4:492−98 doi: 10.1038/87440
CrossRef Google Scholar
|
[4]
|
Damak S, Rong M, Yasumatsu K, Kokrashvili Z, Varadarajan V, et al. 2003. Detection of sweet and umami taste in the absence of taste receptor T1r3. Science 301:850−53 doi: 10.1126/science.1087155
CrossRef Google Scholar
|
[5]
|
Yamaguchi S, Ninomiya K. 1998. What is umami? Food Reviews International 14:123−38 doi: 10.1080/87559129809541155
CrossRef Google Scholar
|
[6]
|
Lindemann B, Ogiwara Y, Ninomiya Y. 2002. The Discovery of Umami. Chemical Senses 27:843−44 doi: 10.1093/chemse/27.9.843
CrossRef Google Scholar
|
[7]
|
Hajeb P, Jinap S. 2015. Umami taste components and their sources in Asian foods. Critical Reviews in Food Science and Nutrition 55:778−91 doi: 10.1080/10408398.2012.678422
CrossRef Google Scholar
|
[8]
|
Chen M, Gao X, Pan D, Xu S, Zhang H, et al. 2021. Taste characteristics and umami mechanism of novel umami peptides and umami-enhancing peptides isolated from the hydrolysates of Sanhuang Chicken. European Food Research and Technology 247:1633−44 doi: 10.1007/s00217-021-03734-w
CrossRef Google Scholar
|
[9]
|
Charoenkwan P, Nantasenamat C, Hasan MM, Moni MA, Manavalan B, et al. 2021. UMPred-FRL: a new approach for accurate prediction of umami peptides using feature representation learning. International Journal of Molecular Sciences 22:13124 doi: 10.3390/ijms222313124
CrossRef Google Scholar
|
[10]
|
Masic U, Yeomans MR. 2014. Umami flavor enhances appetite but also increases satiety. The American Journal of Clinical Nutrition 100:532−38 doi: 10.3945/ajcn.113.080929
CrossRef Google Scholar
|
[11]
|
Zhang Y, Venkitasamy C, Pan Z, Liu W, Zhao L. 2017. Novel umami ingredients: umami peptides and their taste. Journal of Food Science 82:16−23 doi: 10.1111/1750-3841.13576
CrossRef Google Scholar
|
[12]
|
Cao L, Halpern BS, Troell M, Short R, Zeng C, et al. 2023. Vulnerability of blue foods to human-induced environmental change. Nature Sustainability 6:1186−98 doi: 10.1038/s41893-023-01156-y
CrossRef Google Scholar
|
[13]
|
Liu T, Liang Y, Fan S, et al. 2018. Analysis of characteristic taste components of soldier crab (Mictyris brevidactylus). Food Science 14:236−241 doi: 10.7506/spkx1002-6630-201814035
CrossRef Google Scholar
|
[14]
|
Wang Y, Wang H, Xiang H, Chen S, Zhao Y, et al. 2024. Unlocking the opportunities for creating sustainable, flavorful and healthy high-protein "blue foods": Focusing on the impacts of protein-flavor interactions. Trends in Food Science & Technology 148:104523 doi: 10.1016/j.jpgs.2024.104523
CrossRef Google Scholar
|
[15]
|
Li X, Xie X, Wang J, Xu Y, Yi S, et al. 2020. Identification, taste characteristics and molecular docking study of novel umami peptides derived from the aqueous extract of the clam meretrix meretrix Linnaeus. Food Chemistry 312:126053 doi: 10.1016/j.foodchem.2019.126053
CrossRef Google Scholar
|
[16]
|
Alexander LM. 1993. Large marine ecosystems: A new focus for marine resources management. Marine Policy 17:186−98 doi: 10.1016/0308-597X(93)90076-F
CrossRef Google Scholar
|
[17]
|
Aswani S, Basurto X, Ferse S, Glaser M, Campbell L, et al. 2018. Marine resource management and conservation in the Anthropocene. Environmental Conservation 45:192−202 doi: 10.1017/S0376892917000431
CrossRef Google Scholar
|
[18]
|
Cheung RCF, Ng TB, Wong JH. 2015. Marine Peptides: Bioactivities and Applications. Marine Drugs 13:4006−4043 doi: 10.3390/md13074006
CrossRef Google Scholar
|
[19]
|
Li N, Mahalik NP. 2019. A big data and cloud computing specification, standards and architecture: agricultural and food informatics. International Journal of Information and Communication Technology 14:159−74 doi: 10.1504/IJICT.2019.097687
CrossRef Google Scholar
|
[20]
|
Chen JN, Zhang YY, Huang XH, Dong M, Dong XP, et al. 2023. Integrated volatolomics and metabolomics analysis reveals the characteristic flavor formation in Chouguiyu, a traditional fermented mandarin fish of China. Food Chemistry 418:135874 doi: 10.1016/j.foodchem.2023.135874
CrossRef Google Scholar
|
[21]
|
Deng X, Lin H, Ahmed I, Sui J. 2021. Isolation and identification of the umami peptides from Trachinotus ovatus hydrolysate by consecutive chromatography and Nano-HPLC-MS/MS. LWT–Food Science and Technology 141:110887 doi: 10.1016/j.lwt.2021.110887
CrossRef Google Scholar
|
[22]
|
Qi L, Gao X, Pan D, Sun Y, Cai Z, et al. 2022. Research progress in the screening and evaluation of umami peptides. Comprehensive Reviews in Food Science and Food Safety 21:1462−90 doi: 10.1111/1541-4337.12916
CrossRef Google Scholar
|
[23]
|
Zhang J, Zhao M, Su G, Lin L. 2019. Identification and taste characteristics of novel umami and umami-enhancing peptides separated from peanut protein isolate hydrolysate by consecutive chromatography and UPLC–ESI–QTOF–MS/MS. Food Chemistry 278:674−682 doi: 10.1016/j.foodchem.2018.11.114
CrossRef Google Scholar
|
[24]
|
Zhang J, Sun-Waterhouse D, Su G, Zhao M. 2019. New insight into umami receptor, umami/umami-enhancing peptides and their derivatives: A review. Trends in Food Science & Technology 88:429−43 doi: 10.1016/j.jpgs.2019.04.008
CrossRef Google Scholar
|
[25]
|
Chisholm B, Nelson D, Schwarcz H. 1983. Marine and terrestrial protein in prehistoric diets on the British Columbia Coast. Current Anthropology 24:396−98
Google Scholar
|
[26]
|
Arai S, Yamashita M, Noguchi M, Fujimaki M. 1973. Tastes of L-glutamyl oligopeptides in relation to their chromatographic properties. Agricultural and Biological Chemistry 37:151−56 doi: 10.1080/00021369.1973.10860638
CrossRef Google Scholar
|
[27]
|
Ovchinnikova TV. 2021. Marine peptides: structure, bioactivities, and a new hope for therapeutic application. Marine Drugs 19:407 doi: 10.3390/md19080407
CrossRef Google Scholar
|
[28]
|
Peck LS, Webb KE, Bailey DM. 2004. Extreme sensitivity of biological function to temperature in Antarctic marine species. Functional Ecology 18:625−30 doi: 10.1111/j.0269-8463.2004.00903.x
CrossRef Google Scholar
|
[29]
|
Spaggiari G, Di Pizio A, Cozzini P. 2020. Sweet, umami and bitter taste receptors: State of the art of in silico molecular modeling approaches. Trends in Food Science & Technology 96:21−29 doi: 10.1016/j.jpgs.2019.12.002
CrossRef Google Scholar
|
[30]
|
Wang W, Cui Z, Ning M, Zhou T, Liu Y. 2022. In-silico investigation of umami peptides with receptor T1R1/T1R3 for the discovering potential targets: A combined modeling approach. Biomaterials 281:121338 doi: 10.1016/j.biomaterials.2021.121338
CrossRef Google Scholar
|
[31]
|
Diepeveen J, Moerdijk-Poortvliet TCW, van der Leij FR. 2022. Molecular insights into human taste perception and umami tastants: A review. Journal of Food Science 87:1449−65 doi: 10.1111/1750-3841.16101
CrossRef Google Scholar
|
[32]
|
Wu B, Eldeghaidy S, Ayed C, Fisk ID, Hewson L, et al. 2022. Mechanisms of umami taste perception: From molecular level to brain imaging. Critical Reviews in Food Science and Nutrition 62:7015−24 doi: 10.1080/10408398.2021.1909532
CrossRef Google Scholar
|
[33]
|
Lee BK, Mayhew EJ, Sanchez-Lengeling B, Wei JN, Qian WW, et al. 2023. A principal odor map unifies diverse tasks in olfactory perception. Science 381:999−1006 doi: 10.1126/science.ade4401
CrossRef Google Scholar
|
[34]
|
Toda Y, Nakagita T, Hayakawa T, Okada S, Narukawa M, et al. 2013. Two Distinct Determinants of Ligand Specificity in T1R1/T1R3 (the Umami Taste Receptor)*. Journal of Biological Chemistry 288:36863−77 doi: 10.1074/jbc.M113.494443
CrossRef Google Scholar
|
[35]
|
Zhang F, Klebansky B, Fine RM, Xu H, Pronin A, et al. 2008. Molecular mechanism for the umami taste synergism. Proceedings of the National Academy of Sciences of the United States of America 105:20930−34 doi: 10.1073/pnas.0810174106
CrossRef Google Scholar
|
[36]
|
San Gabriel A, Uneyama H, Yoshie S, Torii K. 2005. Cloning and Characterization of a Novel mGluR1 Variant from Vallate Papillae that Functions as a Receptor for l-glutamate Stimuli. Chemical Senses 30:i25−i26 doi: 10.1093/chemse/bjh095
CrossRef Google Scholar
|
[37]
|
Toyono T, Seta Y, Kataoka S, Harada H, Morotomi T, et al. 2002. Expression of the Metabotropic Glutamate Receptor, mGluR4a, in the Taste Hairs of Taste Buds in Rat Gustatory Papillae. Archives of Histology and Cytology 65:91−96 doi: 10.1679/aohc.65.91
CrossRef Google Scholar
|
[38]
|
Roper SD, Chaudhari N. 2017. Taste buds: cells, signals and synapses. Nature Reviews Neuroscience 18:485−497 doi: 10.1038/nrn.2017.68
CrossRef Google Scholar
|
[39]
|
Nango E, Akiyama S, Maki-Yonekura S, Ashikawa Y, Kusakabe Y, et al. 2016. Taste substance binding elicits conformational change of taste receptor T1r heterodimer extracellular domains. Science Report 6:25745 doi: 10.1038/srep25745
CrossRef Google Scholar
|
[40]
|
Nuemket N, Yasui N, Kusakabe Y, Nomura Y, Atsumi N, et al. 2017. Structural basis for perception of diverse chemical substances by T1r taste receptors. Nature Communications 8:15530 doi: 10.1038/ncomms15530
CrossRef Google Scholar
|
[41]
|
Autzen HE, Myasnikov AG, Campbell MG, Asarnow D, Julius D, et al. 2018. Structure of the human TRPM4 ion channel in a lipid nanodisc. Science 359:228−32 doi: 10.1126/science.aar4510
CrossRef Google Scholar
|
[42]
|
Liu H, Da LT, Liu Y. 2019. Understanding the molecular mechanism of umami recognition by T1R1-T1R3 using molecular dynamics simulations. Biochemical and Biophysical Research Communications 514:967−73 doi: 10.1016/j.bbrc.2019.05.066
CrossRef Google Scholar
|
[43]
|
Yin Y, Wu M, Zubcevic L, Borschel WF, Lander GC, et al. 2018. Structure of the cold- and menthol-sensing ion channel TRPM8. Science 359:237−41 doi: 10.1126/science.aan4325
CrossRef Google Scholar
|
[44]
|
Zhang N, Yang Y, Wang W, Fan Y, Liu Y. 2021. A potential flavor seasoning from aquaculture by-products: An example of Takifugu obscurus. LWT 151:112160 doi: 10.1016/j.lwt.2021.112160
CrossRef Google Scholar
|
[45]
|
Diez-Ozaeta I, Astiazaran OJ. 2022. Fermented foods: An update on evidence-based health benefits and future perspectives. Food Research International 156:111133 doi: 10.1016/j.foodres.2022.111133
CrossRef Google Scholar
|
[46]
|
Raveschot C, Cudennec B, Coutte F, Flahaut C, Fremont M, et al. 2018. Production of bioactive peptides by Lactobacillus species: from gene to application. Frontiers Microbiology 9:2354 doi: 10.3389/fmicb.2018.02354
CrossRef Google Scholar
|
[47]
|
Yang D, Li C, Li L, Wang Y, Wu Y, et al. 2022. Novel insight into the formation mechanism of umami peptides based on microbial metabolism in Chouguiyu, a traditional Chinese fermented fish. Food Research International 157:111211 doi: 10.1016/j.foodres.2022.111211
CrossRef Google Scholar
|
[48]
|
Nasri R, Abdelhedi O, Nasri M, Jridi M. 2022. Fermented protein hydrolysates: biological activities and applications. Current Opinion in Food Science 43:120−27 doi: 10.1016/j.cofs.2021.11.006
CrossRef Google Scholar
|
[49]
|
Wang W, Zhou X, Liu Y. 2020. Characterization and evaluation of umami taste: A review. TrAC Trends in Analytical Chemistry 127:115876 doi: 10.1016/j.trac.2020.115876
CrossRef Google Scholar
|
[50]
|
Zhang Y, Gao X, Pan D, Zhang Z, Zhou T, et al. 2021. Isolation, characterization and molecular docking of novel umami and umami-enhancing peptides from Ruditapes philippinarum. Food Chemistry 343:128522 doi: 10.1016/j.foodchem.2020.128522
CrossRef Google Scholar
|
[51]
|
Zhu W, He W, Wang F, Bu Y, Li X, et al. 2021. Prediction, molecular docking and identification of novel umami hexapeptides derived from Atlantic cod (Gadus morhua). International Journal of Food Science & Technology 56:402−12 doi: 10.1111/ijfs.14655
CrossRef Google Scholar
|
[52]
|
Wang Y, Luan J, Tang X, Zhu W, Xu Y, et al. 2023. Identification of umami peptides based on virtual screening and molecular docking from Atlantic cod (Gadus morhua). Food Function 14:1510−19 doi: 10.1039/D2FO03776A
CrossRef Google Scholar
|
[53]
|
Zhao W, Su L, Huo S, Yu Z, Li J, et al. 2023. Virtual screening, molecular docking and identification of umami peptides derived from Oncorhynchus mykiss. Food Science and Human Wellness 12:89−93 doi: 10.1016/j.fshw.2022.07.026
CrossRef Google Scholar
|
[54]
|
Zhao S, Ma S, Zhang Y, Gao M, Luo Z, et al. 2024. Combining molecular docking and molecular dynamics simulation to discover four novel umami peptides from tuna skeletal myosin with sensory evaluation validation. Food Chemistry 433:137331 doi: 10.1016/j.foodchem.2023.137331
CrossRef Google Scholar
|
[55]
|
Xu YX, Qu SY, Li T, Zhao HL, Feng Y, et al. 2021. Effects of different proteases on the flavor characteristics of aloididae aloidi muscle hydrolysates. Food Science 42(4):190−96 doi: 10.7506/spkx1002-6630-20190823-248
CrossRef Google Scholar
|
[56]
|
Sable R, Parajuli P, Jois S. 2017. Peptides, Peptidomimetics, and Polypeptides from Marine Sources: A Wealth of Natural Sources for Pharmaceutical Applications. Marine Drugs 15:124 doi: 10.3390/md15040124
CrossRef Google Scholar
|
[57]
|
Fu Y, Liu J, Hansen ET, Bredie WLP, Lametsch R. 2018. Structural characteristics of low bitter and high umami protein hydrolysates prepared from bovine muscle and porcine plasma. Food Chemistry 257:163−71 doi: 10.1016/j.foodchem.2018.02.159
CrossRef Google Scholar
|
[58]
|
Tong X, Lian Z, Miao L, Qi B, Zhang S, et al. 2020. An innovative two-step enzyme-assisted aqueous extraction for the production of reduced bitterness soybean protein hydrolysates with high nutritional value. LWT 134:110151 doi: 10.1016/j.lwt.2020.110151
CrossRef Google Scholar
|
[59]
|
Hunsakul K, Laokuldilok T, Sakdatorn V, Klangpetch W, Brennan CS, et al. 2022. Optimization of enzymatic hydrolysis by alcalase and flavourzyme to enhance the antioxidant properties of jasmine rice bran protein hydrolysate. Scientific Report 12:12582 doi: 10.1038/s41598-022-16821-z
CrossRef Google Scholar
|
[60]
|
Zhang XZ, Liang ZL, Pei JW, et al. 2023. Preparation of umami enzymatic hydrolysate from squid processing by-products by stepwise dual-enzymatic hydrolysis. Food and Fermentation Industries 49(15):201−7 doi: 10.13995/j.cnki.11-1802/ts.033502
CrossRef Google Scholar
|
[61]
|
Wang YM, Zhang Z, Sheng Y, Chi CF, Wang B. 2024. A systematic review on marine umami peptides: Biological sources, preparation methods, structure-umami relationship, mechanism of action and biological activities. Food Bioscience 57:103637 doi: 10.1016/j.fbio.2024.103637
CrossRef Google Scholar
|
[62]
|
Aaslyng MD, Elmore JS, Mottram DS. 1998. Comparison of the aroma characteristics of acid-hydrolyzed and enzyme-hydrolyzed vegetable proteins produced from soy. Journal of Agricultural and Food Chemistry 46:5225−31 doi: 10.1021/jf9806816
CrossRef Google Scholar
|
[63]
|
Aaslyng MD, Martens M, Poll L, Nielsen PM, Flyge H, et al. 1998. Chemical and sensory characterization of hydrolyzed vegetable protein, a savory flavoring. Journal of Agricutral and Food Chemistry 46:481−89 doi: 10.1021/jf970556e
CrossRef Google Scholar
|
[64]
|
Liu Q, Gao X, Pan D, Liu Z, Xiao C, et al. 2023. Rapid screening based on machine learning and molecular docking of umami peptides from porcine bone. Journal of the Science of Food and Agriculture 103:3915−25 doi: 10.1002/jsfa.12319
CrossRef Google Scholar
|
[65]
|
Li W, Gu Z, Yang Y, Zhou S, Liu Y, et al. 2014. Non-volatile taste components of several cultivated mushrooms. Food Chemistry 143:427−31 doi: 10.1016/j.foodchem.2013.08.006
CrossRef Google Scholar
|
[66]
|
Dai L, Reichert CL, Hinrichs J, Weiss J. 2019. Acid hydrolysis behavior of insoluble protein-rich fraction extracted from Chlorella protothecoides. Colloids and Surfaces A: Physicochemical and Engineering Aspects 569:129−36 doi: 10.1016/j.colsurfa.2019.02.064
CrossRef Google Scholar
|
[67]
|
Li B, Xie Y, Guo Q. 2024. Thermal acid hydrolysis modulates the solubility of quinoa protein: The formation of different types of protein aggregates. Food Hydrocolloids 151:109825 doi: 10.1016/j.foodhyd.2024.109825
CrossRef Google Scholar
|
[68]
|
Ruan S, Sun L, Sun X, He J, Zhuang Y. 2021. Novel umami peptides from tilapia lower jaw and molecular docking to the taste receptor T1R1/T1R3. Food Chemistry 362:130249 doi: 10.1016/j.foodchem.2021.130249
CrossRef Google Scholar
|
[69]
|
Zhang T, Hua Y, Zhou C, Xiong Y, Pan D, et al. 2022. Umami peptides screened based on peptidomics and virtual screening from Ruditapes philippinarum and Mactra veneriformis clams. Food Chemistry 394:133504 doi: 10.1016/j.foodchem.2022.133504
CrossRef Google Scholar
|
[70]
|
Zhang MX, Wang XC, Liu Y, Xu XL, Zhou GH. 2012. Isolation and identification of flavour peptides from Puffer fish (Takifugu obscurus) muscle using an electronic tongue and MALDI-TOF/TOF MS/MS. Food Chemistry 135:1463−70 doi: 10.1016/j.foodchem.2012.06.026
CrossRef Google Scholar
|
[71]
|
Liu Z, Zhu Y, Wang W, Zhou X, Chen G, et al. 2020. Seven novel umami peptides from Takifugu rubripes and their taste characteristics. Food Chemistry 330:127204 doi: 10.1016/j.foodchem.2020.127204
CrossRef Google Scholar
|
[72]
|
Zhang N, Liu H, Zhou X, Wang W, Fan Y, et al. 2022. Taste and stability characteristics of two key umami peptides from pufferfish (Takifugu obscurus). Food Chemistry 371:131124 doi: 10.1016/j.foodchem.2021.131124
CrossRef Google Scholar
|
[73]
|
Zhang Q, Liu R, Geirsdóttir M, Li S, Tomasson T, et al. 2022. Thermal-induced autolysis enzymes inactivation, protein degradation and physical properties of sea cucumber, Cucumaria frondosa. Processes 10:847 doi: 10.3390/pr10050847
CrossRef Google Scholar
|
[74]
|
Xue J, Liu P, Feng L, Zheng L, Gui A, et al. 2023. Insights into the effects of fixation methods on the sensory quality of straight-shaped green tea and dynamic changes of key taste metabolites by widely targeted metabolomic analysis. Food Chemistry: X 20:100943 doi: 10.1016/j.fochx.2023.100943
CrossRef Google Scholar
|
[75]
|
Wang W, Huang Y, Zhao W, Dong H, Yang J, et al. 2022. Identification and comparison of umami-peptides in commercially available dry-cured Spanish mackerels (Scomberomorus niphonius). Food Chemistry 380:132175 doi: 10.1016/j.foodchem.2022.132175
CrossRef Google Scholar
|
[76]
|
Liang J, Chen L, Li YN, Hu X. 2021. Isolation and identification of umami-flavored peptides from Leccinum extremiorientale and their taste characteristic. Journal of Food Processing and Preservation 45:e15255 doi: 10.1111/jfpp.15255
CrossRef Google Scholar
|
[77]
|
Alim A, Yang C, Song H, Liu Y, Zou T, et al. 2019. The behavior of umami components in thermally treated yeast extract. Food Research International 120:534−43 doi: 10.1016/j.foodres.2018.11.002
CrossRef Google Scholar
|
[78]
|
Shen Q, Sun L, He Z, Xie J, Zhuang Y. 2023. Isolation, taste characterization and molecular docking study of novel umami peptides from Lactarius volemus (Fr.). Food Chemistry 401:134137 doi: 10.1016/j.foodchem.2022.134137
CrossRef Google Scholar
|
[79]
|
Wang W, Yang L, Ning M, Liu Z, Liu Y. 2022. A rational tool for the umami evaluation of peptides based on multi-techniques. Food Chemistry 371:131105 doi: 10.1016/j.foodchem.2021.131105
CrossRef Google Scholar
|
[80]
|
Jin Y, Hu D, Chen Q, Shi C, Ye J, et al. 2023. Water-based green and sustainable extraction protocols for value-added compounds from natural resources. Current Opinion in Green and Sustainable Chemistry 40:100757 doi: 10.1016/j.cogsc.2023.100757
CrossRef Google Scholar
|
[81]
|
Iqbal M, Tao Y, Xie S, Zhu Y, Chen D, et al. 2016. Aqueous two-phase system (ATPS): an overview and advances in its applications. Biological Procedures Online 18:18 doi: 10.1186/s12575-016-0048-8
CrossRef Google Scholar
|
[82]
|
Wang H, Liu T, Zhao T, Su G, Zhao M, et al. 2023. The Umami-enhancing Ability Improvement of Pea Protein Hydrolysate by Maillard Reaction Utilizing Sugar-derived NADES. Food and Bioprocess Technology 17:2446−58 doi: 10.1007/s11947-023-03274-z
CrossRef Google Scholar
|
[83]
|
Silva I, Vaz BMC, Sousa S, Pintado MM, Coscueta ER, et al. 2024. Gastrointestinal delivery of codfish skin-derived collagen hydrolysates: deep eutectic solvent extraction and bioactivity analysis. Food Research International 175:113729 doi: 10.1016/j.foodres.2023.113729
CrossRef Google Scholar
|
[84]
|
Ali MS, Roy VC, Park JS, Haque AR, Mok JH, et al. 2024. Protein and polysaccharide recovery from shrimp wastes by natural deep eutectic solvent mediated subcritical water hydrolysis for biodegradable film. Marine Biotechnology doi: 10.1007/s10126-024-10321-z
CrossRef Google Scholar
|
[85]
|
Xu Y, Wang Q, Hou Y. 2020. Efficient purification of R-phycoerythrin from marine algae (Porphyra yezoensis) based on a deep eutectic solvents aqueous two-phase system. Marine Drugs 18:618 doi: 10.3390/md18120618
CrossRef Google Scholar
|
[86]
|
Mittal R, Sharma R, Raghavarao K. 2019. Aqueous two-phase extraction of R-phycoerythrin from marine macro-algae, Gelidium pusillum. Bioresource Technology 280:277−86 doi: 10.1016/j.biortech.2019.02.044
CrossRef Google Scholar
|
[87]
|
Bu Y, Liu Y, Luan H, Zhu W, Li X, et al. 2021. Characterization and structure–activity relationship of novel umami peptides isolated from Thai fish sauce. Food Function 12:5027−37 doi: 10.1039/D0FO03326J
CrossRef Google Scholar
|
[88]
|
Jia R, He Y, Wang GY, et al. 2022. Recent progress in research on umami peptides in food. Meat Researach 36:65−71
Google Scholar
|
[89]
|
Heinzelmann K, Franke K. 1999. Using freezing and drying techniques of emulsions for the microencapsulation of fish oil to improve oxidation stability. Colloids and Surfaces B: Biointerfaces 12:223−29 doi: 10.1016/S0927-7765(98)00077-0
CrossRef Google Scholar
|
[90]
|
Zhang Z. 2012. Study on preparation of powder seasoning from Tilapia by-products. Thesis. Ocean University of China, China. pp. 3-8. www.dissertationtopic.net/doc/1719533
|
[91]
|
Fu H, Feng Q, Qiu D, Shen X, Li C, et al. 2023. Improving the flavor of tilapia fish head soup by adding lipid oxidation products and cysteine. Food Chemistry 429:136976 doi: 10.1016/j.foodchem.2023.136976
CrossRef Google Scholar
|
[92]
|
Ruan L, Ju Y, Zhan C, Hou L. 2022. Improved umami flavor of soy sauce by adding enzymatic hydrolysate of low-value fish in the natural brewing process. LWT 155:112911 doi: 10.1016/j.lwt.2021.112911
CrossRef Google Scholar
|
[93]
|
Abdo H, Sandeep J, Guillermo GG, Hana T, Mirian P, et al. 2023. Food quality 4.0: from traditional approaches to digitalized automated analysis. Journal of Food Engineering 337:111216 doi: 10.1016/j.jfoodeng.2022.111216
CrossRef Google Scholar
|
[94]
|
Hassoun A, Alhaj Abdullah N, Aït-Kaddour A, Ghellam M, Beşir A, et al. 2024. Food traceability 4.0 as part of the fourth industrial revolution: key enabling technologies. Critical Reviews in Food Science and Nutrition 64:873−89 doi: 10.1080/10408398.2022.2110033
CrossRef Google Scholar
|
[95]
|
Bai C, Dallasega P, Orzes G, Sarkis J. 2020. Industry 4.0 technologies assessment: A sustainability perspective. International Journal of Production Economics 229:107776 doi: 10.1016/j.ijpe.2020.107776
CrossRef Google Scholar
|
[96]
|
Dadhaneeya H, Nema PK, Arora VK. 2023. Internet of Things in food processing and its potential in Industry 4.0 era: A review. Trends in Food Science & Technology 139:104109 doi: 10.1016/j.jpgs.2023.07.006
CrossRef Google Scholar
|
[97]
|
Hassoun A, Aït-Kaddour A, Abu-Mahfouz AM, Rathod NB, Bader F, et al. 2023. The fourth industrial revolution in the food industry—Part I: Industry 4.0 technologies. Critical Reviews in Food Science and Nutrition 63:6547−63 doi: 10.1080/10408398.2022.2034735
CrossRef Google Scholar
|
[98]
|
de Oliveira-Dias D, Maqueira-Marin JM, Moyano-Fuentes J, Carvalho H. 2023. Implications of using Industry 4.0 base technologies for lean and agile supply chains and performance. International Journal of Production Economics 262:108916 doi: 10.1016/j.ijpe.2023.108916
CrossRef Google Scholar
|
[99]
|
Jiang L, Jiang J, Wang X, Zhang Y, Zheng B, et al. 2022. IUP-BERT: identification of umami peptides based on BERT features. Foods 11:3742 doi: 10.3390/foods11223742
CrossRef Google Scholar
|
[100]
|
Pallante L, Korfiati A, Androutsos L, Stojceski F, Bompotas A, et al. 2022. Toward a general and interpretable umami taste predictor using a multi-objective machine learning approach. Scientific Reports 12:21735 doi: 10.1038/s41598-022-25935-3
CrossRef Google Scholar
|
[101]
|
Xiong Y, Gao X, Pan D, Zhang T, Qi L, et al. 2022. A strategy for screening novel umami dipeptides based on common feature pharmacophore and molecular docking. Biomaterials 288:121697 doi: 10.1016/j.biomaterials.2022.121697
CrossRef Google Scholar
|
[102]
|
Xiu H, Liu Y, Yang H, Ren H, Luo B, et al. 2022. Identification of novel umami molecules via QSAR models and molecular docking. Food Functions 13:7529−39 doi: 10.1039/D2FO00544A
CrossRef Google Scholar
|
[103]
|
Yu Z, Kang L, Zhao W, Wu S, Ding L, et al. 2021. Identification of novel umami peptides from myosin via homology modeling and molecular docking. Food Chemistry 344:128728 doi: 10.1016/j.foodchem.2020.128728
CrossRef Google Scholar
|
[104]
|
Wang Y, Liu T, Xie J, Cheng M, Sun L, et al. 2022. A review on application of molecular simulation technology in food molecules interaction. Current Research in Food Science 5:1873−81 doi: 10.1016/j.crfs.2022.10.012
CrossRef Google Scholar
|
[105]
|
Li C, Hua Y, Pan D, Qi L, Xiao C, et al. 2023. A rapid selection strategy for umami peptide screening based on machine learning and molecular docking. Food Chemistry 404:134562 doi: 10.1016/j.foodchem.2022.134562
CrossRef Google Scholar
|
[106]
|
Mengucci C, Ferranti P, Romano A, Masi P, Picone G, et al. 2022. Food structure, function and artificial intelligence. Trends in Food Science & Technology 123:251−63 doi: 10.1016/j.jpgs.2022.03.015
CrossRef Google Scholar
|
[107]
|
Zhang J, Yan W, Zhang Q, Li Z, Liang L, et al. 2023. Umami-BERT: An interpretable BERT-based model for umami peptides prediction. Food Research International 172:113142 doi: 10.1016/j.foodres.2023.113142
CrossRef Google Scholar
|
[108]
|
Qi L, Du J, Sun Y, Xiong Y, Zhao X, et al. 2023. Umami-MRNN: Deep learning-based prediction of umami peptide using RNN and MLP. Food Chemistry 405:134935 doi: 10.1016/j.foodchem.2022.134935
CrossRef Google Scholar
|
[109]
|
Cui Z, Zhang N, Zhou T, Zhou X, Meng H, et al. 2023. Conserved sites and recognition mechanisms of T1R1 and T2R14 receptors revealed by ensemble docking and molecular descriptors and fingerprints combined with machine learning. Journal of Agricultural and Food Chemistry 71:5630−45 doi: 10.1021/acs.jafc.3c00591
CrossRef Google Scholar
|
[110]
|
Li M, Zhang X, Zhu Y, Zhang X, Cui Z, et al. 2023. Identifying umami peptides specific to the T1R1/T1R3 receptor via phage display. Journal of Agricutural and Food Chemistry 71:12004−14 doi: 10.1021/acs.jafc.3c02471
CrossRef Google Scholar
|
[111]
|
Chen Z, Wang R, Guo J, Wang X. 2024. The role and future prospects of artificial intelligence algorithms in peptide drug development. Biomedicine & Pharmacotherapy 175:116709 doi: 10.1016/j.biopha.2024.116709
CrossRef Google Scholar
|
[112]
|
Kou X, Shi P, Gao C, Ma P, Xing H, et al. 2023. Data-Driven Elucidation of Flavor Chemistry. Journal of Agricutural and Food Chemistry 71:6789−802 doi: 10.1021/acs.jafc.3c00909
CrossRef Google Scholar
|
[113]
|
Oussous A, Benjelloun FZ, Ait Lahcen A, Belfkih S. 2018. Big Data technologies: A survey. Journal of King Saud University - Computer and Information Sciences 30:431−48 doi: 10.1016/j.jksuci.2017.06.001
CrossRef Google Scholar
|
[114]
|
Yaqoob I, Hashem IAT, Gani A, Mokhtar S, Ahmed E, et al. 2016. Big data: From beginning to future. International Journal of Information Management 36:1231−47 doi: 10.1016/j.ijinfomgt.2016.07.009
CrossRef Google Scholar
|
[115]
|
Gradinaru TC, Petran M, Dragos D, Gilca M. 2022. PlantMolecularTasteDB: a database of taste active phytochemicals. Frontiers in Pharmacology 12:751712 doi: 10.3389/fphar.2021.751712
CrossRef Google Scholar
|
[116]
|
Rojas C, Ballabio D, Pacheco Sarmiento K, Pacheco Jaramillo E, Mendoza M, et al. 2022. ChemTastesDB: A curated database of molecular tastants. Food Chemistry: Molecular Sciences 4:100090 doi: 10.1016/j.fochms.2022.100090
CrossRef Google Scholar
|
[117]
|
Zhang W, Ding W, Li YX, Tam C, Bougouffa S, et al. 2019. Marine biofilms constitute a bank of hidden microbial diversity and functional potential. Nature Communication 10:517 doi: 10.1038/s41467-019-08463-z
CrossRef Google Scholar
|
[118]
|
Wan X, Teng Z, Zhang K, Qiu L, Zhang Z, et al. 2023. Is quality cost or value-added service cost subsidy: Should the ocean big data supply chain adopt which cost subsidy approach of the government? Ocean & Coastal Management 242:106713 doi: 10.1016/j.ocecoaman.2023.106713
CrossRef Google Scholar
|
[119]
|
Zhou Q, Zhang H, Wang S. 2022. Artificial intelligence, big data, and blockchain in food safety. International Journal of Food Engineering 18:1−14 doi: 10.1515/ijfe-2021-0299
CrossRef Google Scholar
|
[120]
|
Dagar I, Singh G, Singh PK, Maheshwari S. 2023. A review on evolution, application and future of cloud computing. AIP Con ference Proceedings 2916:050004 doi: 10.1063/5.0177518
CrossRef Google Scholar
|
[121]
|
Pallathadka H, Sajja GS, Phasinam K, Ritonga M, Naved M, et al. 2022. An investigation of various applications and related challenges in cloud computing. Materials Today: Proceedings 51:2245−48 doi: 10.1016/j.matpr.2021.11.383
CrossRef Google Scholar
|
[122]
|
Kamilaris A, Fonts A, Prenafeta-Boldύ FX. 2019. The rise of blockchain technology in agriculture and food supply chains. Trends in Food Science & Technology 91:640−52 doi: 10.1016/j.jpgs.2019.07.034
CrossRef Google Scholar
|
[123]
|
Guo C, Liu Y, Na M, Song J. 2023. Dual-layer index for efficient traceability query of food supply chain based on blockchain. Foods 12:2267 doi: 10.3390/foods12112267
CrossRef Google Scholar
|
[124]
|
Chen H, Zhang P, Li W, Wu M, Li F. 2023. An irreversible ultralong-time dependent anti-counterfeiting strategy based on mixed perovskite halogen separation for marine transportation security. Journal of Solid State Chemistry 326:124183 doi: 10.1016/j.jssc.2023.124183
CrossRef Google Scholar
|
[125]
|
She S, Zhu J, Yi K, Wang X. 2023. Active response from managers: green marine supply chain empathic response mechanism. Ocean & Coastal Management 245:106878 doi: 10.1016/j.ocecoaman.2023.106878
CrossRef Google Scholar
|
[126]
|
Antonucci F, Figorilli S, Costa C, Pallottino F, Raso L, et al. 2019. A review on blockchain applications in the agri-food sector. Journal of the Science of Food and Agriculture 99:6129−38 doi: 10.1002/jsfa.9912
CrossRef Google Scholar
|
[127]
|
Zhao G, Liu S, Lopez C, Lu H, Elgueta S, et al. 2019. Blockchain technology in agri-food value chain management: a synthesis of applications, challenges and future research directions. Com puters in Industry 109:83−99 doi: 10.1016/j.compind.2019.04.002
CrossRef Google Scholar
|
[128]
|
Bai W, Liang J, Zhao W, Qian M, Zeng X, et al. 2022. Umami and umami-enhancing peptides from myofibrillar protein hydrolysates in low-sodium dry-cured Spanish mackerel (Scomberomorus niphonius) under the action of Lactobacillus plantarum. International Journal of Food Science & Technology 57: 5494–503 doi: 10.1111/ijfs.15883
CrossRef Google Scholar
|