[1]

Office of Energy Efficiency & Renewable Energy. n.d. Fuel cells. www.energy.gov/eere/fuelcells/fuel-cells

[2]

International Energy Agency. 2022. Global Hydrogen Review 2022. Technical Report. International Energy Agency, Paris. https://iea.blob.core.windows.net/assets/c5bc75b1-9e4d-460d-9056-6e8e626a11c4/GlobalHydrogenReview2022.pdf

[3]

Zhang M, Yang X. 2022. The regulatory perspectives to China's emerging hydrogen economy: characteristics, challenges, and solutions. Sustainability 14(15):9700

doi: 10.3390/su14159700
[4]

U.S. Energy Information Administration (EIA). 2023. Hydrogen explained: production of hydrogen. www.eia.gov/energyexplained/hydrogen/production-of-hydrogen.php

[5]

U.S. Energy Information Administration (EIA). 2024. Biofuels explained: ethanol. www.eia.gov/energyexplained/biofuels/ethanol-supply.php

[6]

Nanda S, Rana R, Zheng Y, Kozinski JA, Dalai AK. 2017. Insights on pathways for hydrogen generation from ethanol. Sustainable Energy & Fuels 1(6):1232−45

doi: 10.1039/C7SE00212B
[7]

Huber GW, Iborra S, Corma A. 2006. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chemical Reviews 106(9):4044−98

doi: 10.1021/cr068360d
[8]

Idriss H. 2004. Ethanol reactions over the surfaces of noble metal/cerium oxide catalysts. Platinum Metals Review 48(3):105−15

doi: 10.1595/003214004X483105115
[9]

Ye XF, Wang SR, Hu Q, Wang ZR, Wen TL, et al. 2009. Improvement of multi-layer anode for direct ethanol solid oxide fuel cells. Electrochemistry Communications 11(4):823−26

doi: 10.1016/j.elecom.2009.02.003
[10]

Ye XF, Wang SR, Wang ZR, Hu Q, Sun XF, et al. 2008. Use of La 0.75Sr 0.25Cr 0.5Mn 0.5O 3 materials in composite anodes for direct ethanol solid oxide fuel cells. Journal of Power Sources 183(2):512−17

doi: 10.1016/j.jpowsour.2008.05.064
[11]

Jiang Y, Virkar AV. 2001. A high performance, anode-supported solid oxide fuel cell operating on direct alcohol. Journal of the Electrochemical Society 148(7):A706

doi: 10.1149/1.1375166
[12]

Wang W, Wang F, Ran R, Park HJ, Jung DW, et al. 2014. Coking suppression in solid oxide fuel cells operating on ethanol by applying pyridine as fuel additive. Journal of Power Sources 265:20−29

doi: 10.1016/j.jpowsour.2014.04.111
[13]

Wang W, Chen Y, Wang F, Tade MO, Shao Z. 2015. Enhanced electrochemical performance, water storage capability and coking resistance of a Ni+BaZr 0.1Ce 0.7Y 0.1Yb 0.1O 3–δ anode for solid oxide fuel cells operating on ethanol. Chemical Engineering Science 126:22−31

doi: 10.1016/j.ces.2014.12.011
[14]

Lo Faro M, Reis RM, Saglietti GGA, Oliveira VL, Zignani SC, et al. 2018. Solid oxide fuel cells fed with dry ethanol: The effect of a perovskite protective anodic layer containing dispersed Ni-alloy @ FeOx core-shell nanoparticles. Applied Catalysis B: Environmental 220:98−110

doi: 10.1016/j.apcatb.2017.08.010
[15]

Ye XF, Wang SR, Hu Q, Chen JY, Wen TL, et al. 2009. Improvement of Cu–CeO 2 anodes for SOFCs running on ethanol fuels. Solid State Ionics 180(2-3):276−81

doi: 10.1016/j.ssi.2008.11.010
[16]

García VM, López E, Serra M, Llorca J. 2009. Dynamic modeling of a three-stage low-temperature ethanol reformer for fuel cell application. Journal of Power Sources 192(1):208−15

doi: 10.1016/j.jpowsour.2008.12.055
[17]

Ulejczyk B, Jóźwik P, Nogal Ł, Młotek M, Krawczyk K. 2022. Efficient conversion of ethanol to hydrogen in a hybrid plasma-catalytic reactor. Energies 15(9):3050

doi: 10.3390/en15093050
[18]

Ni M, Leung DYC, Leung MKH. 2007. A review on reforming bio-ethanol for hydrogen production. International Journal of Hydrogen Energy 32(15):3238−47

doi: 10.1016/j.ijhydene.2007.04.038
[19]

López E, Divins NJ, Anzola A, Schbib S, Borio D, et al. 2013. Ethanol steam reforming for hydrogen generation over structured catalysts. International Journal of Hydrogen Energy 38(11):4418−28

doi: 10.1016/j.ijhydene.2013.01.174
[20]

Andersson M, Paradis H, Yuan J, Sundén B. 2011. Modeling analysis of different renewable fuels in an anode supported SOFC. Journal of Fuel Cell Science and Technology 8(3):031013

doi: 10.1115/1.4002618
[21]

Dokmaingam P, Assabumrungrat S, Soottitantawat A, Laosiripojana N. 2010. Modelling of tubular-designed solid oxide fuel cell with indirect internal reforming operation fed by different primary fuels. Journal of Power Sources 195(1):69−78

doi: 10.1016/j.jpowsour.2009.06.102
[22]

Laosiripojana N, Assabumrungrat S. 2007. Catalytic steam reforming of methane, methanol, and ethanol over Ni/YSZ: The possible use of these fuels in internal reforming SOFC. Journal of Power Sources 163(2):943−51

doi: 10.1016/j.jpowsour.2006.10.006
[23]

Augusto BL, Noronha FB, Fonseca FC, Tabuti FN, Colman RC, et al. 2014. Nickel/gadolinium-doped ceria anode for direct ethanol solid oxide fuel cell. International Journal of Hydrogen Energy 39(21):11196−209

doi: 10.1016/j.ijhydene.2014.05.088
[24]

Sarruf BJM, Hong JE, Steinberger-Wilckens R, de Miranda PEV. 2020. Ceria-Co-Cu-based SOFC anode for direct utilisation of methane or ethanol as fuels. International Journal of Hydrogen Energy 45(8):5297−308

doi: 10.1016/j.ijhydene.2019.04.075
[25]

Hariharan D, Chhatija H, Brown J, Gundlapally S. 2024. Modeling and analysis of the hydrogen production via steam reforming of ethanol, methanol, and methane fuels. SAE Technical Paper Series. Detroit, Michigan, USA: WCX SAE World Congress. DOI: 10.4271/2024-01-2179

[26]

Dogdibegovic E, Fukuyama Y, Tucker MC. 2021. Ethanol internal reforming in solid oxide fuel cells: a path toward high performance metal-supported cells for vehicular applications. Journal of Power Sources 449:227598

doi: 10.1016/j.jpowsour.2019.227598
[27]

Gundlapally SR, Balakotaiah V. 2011. Heat and mass transfer correlations and bifurcation analysis of catalytic monoliths with developing flows. Chemical Engineering Science 66(9):1879−92

doi: 10.1016/j.ces.2011.01.045
[28]

Shah RK, London AL. 1978. Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data. New York: Academic Press. https://searchworks.stanford.edu/view/729747

[29]

Gundlapally SR, Papadimitriou I, Wahiduzzaman S, Gu T. 2016. Development of ECU capable grey-box models from detailed models — application to a SCR reactor. Emission Control Science and Technology 2(3):124−36

doi: 10.1007/s40825-016-0039-x
[30]

Gundlapally SR, Dudgeon R, Wahiduzzaman S. 2018. Efficient solution of washcoat diffusion-reaction problem for real-time simulations. Emission Control Science and Technology 4(2):90−102

doi: 10.1007/s40825-018-0083-9
[31]

Jiang Y, Virkar AV. 2003. Fuel composition and diluent effect on gas transport and performance of anode-supported SOFCs. Journal of the Electrochemical Society 150(7):A942

doi: 10.1149/1.1579480
[32]

Andersson M, Yuan J, Sundn B. 2012. SOFC modeling considering electrochemical reactions at the active three phase boundaries. International Journal of Heat and Mass Transfer 55(4):773−88

doi: 10.1016/j.ijheatmasstransfer.2011.10.032