[1] |
Newman DJ, Cragg GM. 2020. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. Journal of Natural Products 83(3):770−803 doi: 10.1021/acs.jnatprod.9b01285 |
[2] |
Vilas-Boas AA, Pintado M, Oliveira ALS. 2021. Natural bioactive compounds from food waste: toxicity and safety concerns. Foods 10(7):1564 doi: 10.3390/foods10071564 |
[3] |
Philippine Statistics Authority. 2020. Commercial crops: supply utilization accounts. https://openstat.psa.gov.ph/PXWeb/pxweb/en/DB/DB__2B__AA__SU/0012B5FSUA5.px/?rxid=bdf9d8da-96f1-4100-ae09-18cb3eaeb313 |
[4] |
Chou CC. 2002. Preparation antioxidants enriched functional food products from sugar cane and beet. US20030198694A1. |
[5] |
Chung YM, Wang HC, El-Shazly M, Leu YL, Cheng MC, et al. 2011. Antioxidant and tyrosinase inhibitory constituents from a desugared sugar cane extract: a byproduct of sugar production. Journal of Agricultural and Food Chemistry 59(17):9219−25 doi: 10.1021/jf202119m |
[6] |
Saska M, Chou C. 2006. Antioxidants: An excellent phytochemical functional food from sugarcane. Proceedings Annual Meeting Sugar Industry Technologists, La Baule, France, May 14-17, 2006. |
[7] |
Takara K, Matsui D, Wada K, Ichiba T, Nakasone Y. 2002. New antioxidative phenolic glycosides isolated from Kokuto non-centrifuged cane sugar. Bioscience, Biotechnology, and Biochemistry 66:29−35 doi: 10.1271/bbb.66.29 |
[8] |
Rein MJ, Renouf M, Cruz-Hernandez C, Actis-Goretta L, Thakkar SK, et al. 2013. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. British Journal of Clinical Pharmacology 75(3):588−602 doi: 10.1111/j.1365-2125.2012.04425.x |
[9] |
Ribeiro VR, Maciel GM, Fachi MM, Pontarolo R, de Andrade Arruda Fernandes I, et al. 2019. Improvement of phenolic compound bioaccessibility from yerba mate (Ilex paraguariensis) extracts after biosorption on Saccharomyces cerevisiae. Food Research International 126:108623 doi: 10.1016/j.foodres.2019.108623 |
[10] |
Peña-Vázquez GI, Dominguez-Fernández MT, Camacho-Zamora BD, Hernandez-Salazar M, Urías-Orona V, et al. 2022. In vitro simulated gastrointestinal digestion impacts bioaccessibility and bioactivity of Sweet orange (Citrus sinensis) phenolic compounds. Journal of Functional Foods 88:104891 doi: 10.1016/j.jff.2021.104891 |
[11] |
Association of Official Analytical Chemists (AOAC). 2015. Official methods of analysis of Association of Official Analytical Chemists. 18th Edition. Arlington: AOAC. pp. 806−14 |
[12] |
Singleton VL, Orthofer R, Lamuela-Raventós RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods in Enzymology 299:152−78 doi: 10.1016/S0076-6879(99)99017-1 |
[13] |
Colombo R, Lanças FM, Yariwake JH. 2006. Determination of flavonoids in cultivated sugarcane leaves, bagasse, juice and in transgenic sugarcane by liquid chromatography-UV detection. Journal of Chromatography A 1103(1):118−24 doi: 10.1016/j.chroma.2005.11.007 |
[14] |
Shibata Y, Ohara K, Matsumoto K, Hasegawa T, Akimoto M. 2021. Total Anthocyanin Content, Total Phenolic Content, and Antioxidant Activity of Various Blueberry Cultivars Grown in Togane, Chiba Prefecture, Japan. Journal of Nutritional Science and Vitaminology 67(3):201−9 doi: 10.3177/jnsv.67.201 |
[15] |
Shay PE, Trofymow JA, Constabel CP. 2017. An improved butanol-HCl assay for quantification of water-soluble, acetone: methanol-soluble, and insoluble proanthocyanidins (condensed tannins). Plant Methods 13:63 doi: 10.1186/s13007-017-0213-3 |
[16] |
Abbas SR, Sabir SM, Ahmad SD, Boligon AA, Athayde ML. 2014. Phenolic profile, antioxidant potential and DNA damage protecting activity of sugarcane (Saccharum officinarum). Food Chemistry 147:10−16 doi: 10.1016/j.foodchem.2013.09.113 |
[17] |
Szydłowska-Czerniak A, Dianoczki C, Recseg K, Karlovits G, Szłyk E. 2008. Determination of antioxidant capacities of vegetable oils by ferric-ion spectrophotometric methods. Talanta 76(4):899−905 doi: 10.1016/j.talanta.2008.04.055 |
[18] |
Bouayed J, Hoffmann L, Bohn T. 2011. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry 128:14−21 doi: 10.1016/j.foodchem.2011.02.052 |
[19] |
Bauer A, Kirby W, Sherris JC, Turck M. 1996. Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology 45:493−96 doi: 10.1093/ajcp/45.4_ts.493 |
[20] |
Telagari M, Hullatti K. 2015. In-vitro α-amylase and α-glucosidase inhibitory activity of Adiantum caudatum Linn. and Celosia argentea Linn. extracts and fractions. Indian Journal of Pharmacology 47(4):425−29 doi: 10.4103/0253-7613.161270 |
[21] |
Xia Y, Li Y, Shen X, Mizu M, Furuta T, et al. 2017. Effect of dietary supplementation with sugar cane extract on meat quality and oxidative stability in finishing pigs. Animal Nutrition 3(3):295−99 doi: 10.1016/j.aninu.2017.05.002 |
[22] |
Maurício Duarte-Almeida J, Novoa AV, Linares AF, Lajolo FM, Inés Genovese M. 2006. Antioxidant activity of phenolics compounds from sugar cane (Saccharum officinarum L.) juice. Plant Foods for Human Nutrition 61(4):187−92 doi: 10.1007/s11130-006-0032-6 |
[23] |
Shafiqa-Atikah MK, Nor-Khaizura MAR, Mahyudin NA, Abas F, Nur-Syifa' J, et al. 2020. Evaluation of phenolic constituent, antioxidant and antibacterial activities of sugarcane molasses towards foodborne pathogens. Journal of Food Science 4(2):40−47 doi: 10.26656/fr.2017.4(s2).s05 |
[24] |
Payet B, Shum Cheong Sing A, Smadja J. 2006. Comparison of the concentrations of phenolic constituents in cane sugar manufacturing products with their antioxidant activities. Journal of Agricultural and Food Chemistry 54:7270−76 doi: 10.1021/jf060808o |
[25] |
Rahman MM, Islam MB, Biswas M, Khurshid Alam AHM. 2015. In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Research Notes 8:621 doi: 10.1186/s13104-015-1618-6 |
[26] |
Kumar S, Sandhir R, Ojha S. 2014. Evaluation of antioxidant activity and total phenol in different varieties of Lantana camara leaves. BMC Research Notes 7:560 doi: 10.1186/1756-0500-7-560 |
[27] |
Taubert D, Breitenbach T, Lazar A, Censarek P, Harlfinger S, et al. 2003. Reaction rate constants of superoxide scavenging by plant antioxidants. Free Radical Biology and Medicine 35:1599−607 doi: 10.1016/j.freeradbiomed.2003.09.005 |
[28] |
Bezerra DP, Soares AKN, De Sousa DP. 2016. Overview of the role of vanillin on redox status and cancer development. Oxidative Medicine and Cellular Longevity 9:9734816 doi: 10.1155/2016/9734816 |
[29] |
Kheiry M, Dianat M, Badavi M, Mard SA, Bayati V. 2019. p-Coumaric Acid Attenuates Lipopolysaccharide-Induced Lung Inflammation in Rats by Scavenging ROS Production: an In vivo and In vitro Study. Inflammation 42(6):1939−50 doi: 10.1007/s10753-019-01054-6 |
[30] |
Luo X, Tian M, Cheng Y, Ji C, Hu S, et al. 2022. Effects of simulated in vitro gastrointestinal digestion on antioxidant activities and potential bioaccessibility of phenolic compounds from K. coccinea fruits. Frontiers in Nutrition 9:1024651 doi: 10.3389/fnut.2022.1024651 |
[31] |
Gil-Izquierdo A, Zafrilla P, Tomás-Barberán FA. 2002. An in vitro method to simulate phenolic compound release from the food matrix in the gastrointestinal tract. European Food Research and Technology 214(2):155−59 doi: 10.1007/s00217-001-0428-3 |
[32] |
Qin W, Ketnawa S, Ogawa Y. 2022. Effect of digestive enzymes and pH on variation of bioavailability of green tea during simulated in vitro gastrointestinal digestion. Food Science and Human Wellness 11(3):669−75 doi: 10.1016/j.fshw.2021.12.024 |
[33] |
Kawabata K, Yoshioka Y, Terao J. 2019. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules 24(2):370 doi: 10.3390/molecules24020370 |
[34] |
Visioli F, Galli C, Grande S, Colonnelli K, Patelli C, et al. 2003. Hydroxytyrosol excretion differs between rats and humans and depends on the vehicle of administration. Journal of Nutrition 133(8):2612−15 doi: 10.1093/jn/133.8.2612 |
[35] |
Lee W, Woo ER, Lee DG. 2019. Effect of apigenin isolated from Aster yomena against Candida albicans: apigenin-triggered apoptotic pathway regulated by mitochondrial calcium signaling. Journal of Ethnopharmacology 231:19−28 doi: 10.1016/j.jep.2018.11.005 |
[36] |
Nayaka HB, Londonkar RL, Umesh MK, Tukappa A. 2014. Antibacterial Attributes of Apigenin. Isolated from Portulaca oleracea L. International Journal of Bacteriology 2014:175851 doi: 10.1155/2014/175851 |
[37] |
Meneilly GS, Ryan EA, Radziuk J, Lau DC, Yale JF, et al. 2000. Effect of acarbose on insulin sensitivity in elderly patients with diabetes. Diabetes Care 23:1162−67 doi: 10.2337/diacare.23.8.1162 |
[38] |
Gong P, Guo Y, Chen X, Cui D, Wang M, et al. 2022. Structural characteristics, antioxidant and hypoglycemic activities of polysaccharide from Siraitia grosvenorii. Molecules 27(13):4192 doi: 10.3390/molecules27134192 |
[39] |
Gao H, Huang YN, Xu PY, Kawabata J. 2007. Inhibitory effect on α-glucosidase by the fruits of Terminalia chebula Retz. Food Chemistry 105:628−34 doi: 10.1016/j.foodchem.2007.04.023 |
[40] |
Bhandari MR, Jong-Anurakkun N, Hong G, Kawabata J. 2008. α-Glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw.). Food Chemistry 106:247−52 doi: 10.1016/j.foodchem.2007.05.077 |
[41] |
Li K, Yao F, Xue Q, Fan H, Yang L, et al. 2018. Inhibitory effects against α-glucosidase and α-amylase of the flavonoids-rich extract from Scutellaria baicalensis shoots and interpretation of structure–activity relationship of its eight flavonoids by a refined assign-score method. Chemistry Central Journal 12:82 doi: 10.1186/s13065-018-0445-y |
[42] |
Sapin AB, Alaon MKN, Tambalo FMZ, Perez RH, Gaylon A. 2021. Evaluation of the bioactivities of natural phenolics from mango (Mangifera indica Linn.) leaves for cosmetic industry applications. Philippine Journal of Science 150:397−406 doi: 10.56899/150.02.05 |
[43] |
Kumar S, Narwal S, Kumar V, Prakash O. 2011. Alpha-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacognosy Reviews 5(9):19−29 doi: 10.4103/0973-7847.79096 |
[44] |
Lin D, Xiao M, Zhao J, Li Z, Xing B, et al. 2016. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 21:1374 doi: 10.3390/molecules21101374 |