[1]

Abbasi Khalaki M, Moameri M, Asgari Lajayer B, Astatkie T. 2021. Influence of nano-priming on seed germination and plant growth of forage and medicinal plants. Plant Growth Regulation 93:13−28

doi: 10.1007/s10725-020-00670-9
[2]

Reed RC, Bradford KJ, Khanday I. 2022. Seed germination and vigor: ensuring crop sustainability in a changing climate. Heredity 128:450−59

doi: 10.1038/s41437-022-00497-2
[3]

Feeley KJ, Bravo-Avila C, Fadrique B, Perez TM, Zuleta D. 2020. Climate-driven changes in the composition of New World plant communities. Nature Climate Change 10:965−70

doi: 10.1038/s41558-020-0873-2
[4]

Mestanza-Ramón C, Henkanaththegedara SM, Vásconez Duchicela P, Vargas Tierras Y, Sánchez Capa M, et al. 2020. In-Situ and Ex-Situ Biodiversity conservation in ecuador: a review of policies, actions and challenges. Diversity 12:315

doi: 10.3390/d12080315
[5]

Turner SR, Steadman KJ, Vlahos S, Koch JM, Dixon KW. 2013. Seed treatment optimizes benefits of seed bank storage for restoration-ready seeds: the feasibility of prestorage dormancy alleviation for mine-site revegetation. Restoration Ecology 21:186−92

doi: 10.1111/j.1526-100X.2012.00879.x
[6]

Lee SY, Park K, Jang BK, Ji B, Lee H, et al. 2022. Exogenous gibberellin can effectively and rapidly break intermediate physiological dormancy of Amsonia elliptica seeds. Frontiers in Plant Science 13:1043897

doi: 10.3389/fpls.2022.1043897
[7]

Kaur H, Nazir F, Hussain SJ, Kaur R, Rajurkar AB, et al. 2023. Gibberellic acid alleviates cadmium-induced seed germination inhibition through modulation of carbohydrate metabolism and antioxidant capacity in Mung bean seedlings. Sustainability 15:3790

doi: 10.3390/su15043790
[8]

Sadeghi F, Sohrabi Y, Mardeh ASS. 2023. Effects of plant growth regulators on seed germination and biochemical properties of two wheat cultivars under water deficit conditions. Gesunde Pflanzen 75:1121−32

doi: 10.1007/s10343-022-00803-2
[9]

Vishal B, Kumar PP. 2018. Regulation of seed germination and abiotic stresses by gibberellins and abscisic acid. Frontiers Plant Science 9:368905

doi: 10.3389/fpls.2018.00838
[10]

Singh D, Mishra M, Yadav A. 2016. Standardizing the methods for breaking seed dormancy to enhance germination of Gloriosa Superba Seeds. Expert Opinion on Environmental Biology 5:1

doi: 10.4172/2325-9655.1000123
[11]

Kucera B, Cohn MA, Leubner-Metzger G. 2005. Plant hormone interactions during seed dormancy release and germination. Seed Science Research 15:281−307

doi: 10.1079/SSR2005218
[12]

Dunlap JR, Morgan PW. 1977. Reversal of Induced Dormancy in Lettuce by Ethylene, Kinetin, and Gibberellic Acid. Plant Physiology 60:222−24

doi: 10.1104/pp.60.2.222
[13]

Unterholzner SJ, Rozhon W, Papacek M, Ciomas J, Lange T, et al. 2015. Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis. The Plant Cell 27:2261−72

doi: 10.1105/tpc.15.00433
[14]

Hong YF, Ho THD, Wu CF, Ho SL, Yeh RH, et al. 2012. Convergent starvation signals and hormone crosstalk in regulating nutrient mobilization upon germination in cereals. The Plant Cell 24:2857−73

doi: 10.1105/tpc.112.097741
[15]

Dalal NV, Rai VR. 2004. In vitro propagation of Oroxylum indicum Vent. a medicinally important forest tree. Journal of Forest Research 9:61−65

doi: 10.1007/s10310-003-0055-x
[16]

Mangena P. 2021. Analysis of correlation between seed vigour, germination and multiple shoot induction in soybean (Glycine max L. Merr.). Heliyon 7:e07913

doi: 10.1016/j.heliyon.2021.e07913
[17]

Baskin JM, Baskin CC. 2004. A classification system for seed dormancy. Seed Science Research 14:1−16

doi: 10.1079/SSR2003150
[18]

Yildiz M, Beyaz R, Gursoy M, Aycan M, Koc Y, et al. 2017. Seed Dormancy. In Advances in Seed Biology, eds. Jimenez-Lopez JC. Rijeka, UK: IntechOpen. pp. 85-101. doi: 10.5772/intechopen.70571

[19]

Debeaujon I, Léon-Kloosterziel KM, Koornneef M. 2000. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiology 122:403−414

doi: 10.1104/pp.122.2.403
[20]

Baskin JM, Baskin CC. 2021. The great diversity in kinds of seed dormancy: a revision of the Nikolaeva–Baskin classification system for primary seed dormancy. Seed Science Research 31:249−277

doi: 10.1017/S096025852100026X
[21]

Le Roux LG, Robbertse PJ. 1997. Aspects relating to seed production in Gloriosa superba L. South African Journal of Botany 63:191−97

doi: 10.1016/S0254-6299(15)30743-2
[22]

Mahajan YA, Shinde BA, Torris A, Gade AB, Patil VS, et al. 2023. Pre-Sowing Treatments, Seed Components and Water Imbibition Aids Seed Germination of Gloriosa superba. Seeds 2:15−29

doi: 10.3390/seeds2010002
[23]

Rodrigues CR, Rodrigues BF. 2014. Enhancement of seed germination in Macaranga peltata for use in tropical forest restoration. Journal of Forestry Research 25:897−901

doi: 10.1007/s11676-014-0536-0
[24]

Poobathy R, Zakaria R, Murugaiyah V, Subramaniam S. 2019. Surface sterilization and micropropagation of Ludisia discolor. Biocatalysis and Agricultural Biotechnology 22:101380

doi: 10.1016/j.bcab.2019.101380
[25]

Hesami M, Daneshvar MH, Yoosefzadeh-Najafabadi M. 2018. Establishment of a protocol for in vitro seed germination and callus formation of Ficus religiosa L., an important medicinal plant. Jundishapur Journal of Natural Pharmaceutical Products 13:e62682

doi: 10.5812/jjnpp.62682
[26]

Davoudpour Y, Schmidt M, Calabrese F, Richnow HH, Musat N. 2020. High-resolution microscopy to evaluate the efficiency of surface sterilization of Zea mays seeds. PLOS ONE 15:e0242247

doi: 10.1371/journal.pone.0242247
[27]

Teixeira da Silva JA, Winarto B, Dobránszki J, Cardoso JC, Zeng S. 2016. Tissue disinfection for preparation of Dendrobium in vitro culture. Folia Horticulturae 28:57−75

doi: 10.1515/fhort-2016-0008
[28]

Hesami M, Naderi R, Yoosefzadeh-Najafabadi M. 2018. Optimizing sterilization conditions and growth regulator effects on in vitro shoot regeneration through direct organogenesis in Chenopodium quinoa. BioTechnologia 99:49−57

doi: 10.5114/bta.2018.73561
[29]

Mosoh DA, Khandel AK, Verma SK, Vendrame WA. 2023. Effects of sterilization methods and plant growth regulators on in vitro regeneration and tuberization in Gloriosa superba (L.). In Vitro Cellular & Developmental Biology-Plant 59:792−807

doi: 10.1007/s11627-023-10387-9
[30]

Vendrame WA, Xu J, Beleski DG. 2023. Micropropagation of Brassavola nodosa (L.) Lindl. using SETISTM bioreactor. Plant Cell, Tissue and Organ Culture 153:67−76

doi: 10.1007/s11240-022-02441-y
[31]

Raina R, Gupta LM. 1997. Increasing seed yield in glory lily (Gloriosa superba) - experimental approaches. Acta Horticulturae 502:175−80

doi: 10.17660/ActaHortic.1999.502.27
[32]

Patel AI, Desai BS, Chaudhari BN, Vashi JM. 2020. Genetic improvement in Glory lily (Gloriosa superba L.): a review. International Journal of Chemical Studies 8:255−60

doi: 10.22271/chemi.2020.v8.i4d.9701
[33]

Pickens KA, Affolter JM, Wetzstein HY, Wolf JHD. 2003. Enhanced seed germination and seedling growth of Tillandsia eizii in vitro. HortScience 38:101−4

doi: 10.21273/HORTSCI.38.1.101
[34]

Mosoh DA, Prakash O, Khandel AK, Vendrame WA. 2024. Preserving Earth’s flora in the 21st Century: Climate, Biodiversity, and Global Change Factors (GCFs) since the mid-1940s. Frontiers in Conservation Science 5:1383370

doi: 10.3389/fcosc.2024.1383370
[35]

Anandhi S, Rajamani K. 2012. Studies on seed germination and growth in Gloriosa superba L. Global Journal of Research on Medicinal Plants & Indigenous Medicine 1:524

[36]

Sen MK, Jamal M, Nasrin S. 2013. Sterilization factors affect seed germination and proliferation of Achyranthes aspera cultured in vitro. Environmental and Experimental Biology 11:119−23

[37]

Barampuram S, Allen G, Krasnyanski S. 2014. Effect of various sterilization procedures on the in vitro germination of cotton seeds. Plant Cell, Tissue and Organ Culture 118:179−85

doi: 10.1007/s11240-014-0472-x
[38]

Gu M, Li Y, Jiang H, Zhang S, Que Q, et al. 2022. Efficient in vitro sterilization and propagation from stem segment explants of Cnidoscolus aconitifolius (Mill.) I. M. Johnst, a multipurpose woody plant. Plants 11:1937

doi: 10.3390/plants11151937
[39]

Hashim SN, Ghazali SZ, Sidik NJ, Chia-Chay T, Saleh A. 2021. Surface sterilization method for reducing contamination of Clinacanthus nutans nodal explants intended for in-vitro culture. E3S Web of Conferences 306:01004

doi: 10.1051/e3sconf/202130601004
[40]

Miché L, Balandreau J. 2001. Effects of rice seed surface sterilization with hypochlorite on inoculated Burkholderia vietnamiensis. Applied and Environmental Microbiology 67:3046−52

doi: 10.1128/AEM.67.7.3046-3052.2001
[41]

Sauer DB, Burroughs R. 1986. Disinfection of seed surfaces with sodium hypochlorite. Phytopathology 76:745−49

doi: 10.1094/Phyto-76-745
[42]

Hesami M, Daneshvar MH, Lotfi-Jalalabadi A. 2017. Effect of sodium hypochlorite on control of in vitro contamination and seed germination of Ficus religiosa. Iranian Journal of Plant Physiology 7:2157−62

[43]

Ahsan SM, Shin JH, Choi HW. 2022. Availability of hydrogen peroxide solutions as a germination liquid medium for contamination-free in vitro seedling development of Cannabis sativa. Horticultural Science and Technology 40:605−13

doi: 10.7235/HORT.20220055
[44]

Uhl L, Gerstel A, Chabalier M, Dukan S. 2015. Hydrogen peroxide induced cell death: One or two modes of action? Heliyon 1:e00049

doi: 10.1016/j.heliyon.2015.e00049
[45]

le Roux LG, Robbertse PJ. 1994. Tuber ontogeny, morphology and vegetative reproduction of Gloriosa superba L. South African Journal Botany 60:321−24

doi: 10.1016/S0254-6299(16)30586-5
[46]

Acemi A, Özen F. 2019. Optimization of in vitro asymbiotic seed germination protocol for Serapias vomeracea. The EuroBiotech Journal 3:143−51

doi: 10.2478/ebtj-2019-0017
[47]

Caixeta Sousa M, Rodrigues LFOS, da Silva MB, Cruz JO, Diamante MS, et al. 2018. Productive and qualitative performance of tomato plants as a function of the application of plant growth regulators and mineral nutrients. Revista Colombiana de Ciencias Hortícolas 12:416−24

doi: 10.17584/rcch.2018v12i2.7575
[48]

Udayan A, Kathiresan S, Arumugam M. 2018. Kinetin and Gibberellic acid (GA3) act synergistically to produce high-value polyunsaturated fatty acids in Nannochloropsis oceanica CASA CC201. Algal Research 32:182−92

doi: 10.1016/j.algal.2018.03.007
[49]

Dalessandro G. 1973. Interaction of auxin, cytokinin, and gibberellin on cell division and xylem differentiation in cultured explants of Jerusalem artichoke1. Plant and Cell Physiology 14:1167−76

doi: 10.1093/oxfordjournals.pcp.a074956
[50]

Saffari P, Majd A, Jonoubi P, Najafi F. 2021. Effect of treatments on seed dormancy breaking, seedling growth, and seedling antioxidant potential of Agrimonia eupatoria L. Journal of Applied Research on Medicinal and Aromatic Plants 20:100282

doi: 10.1016/j.jarmap.2020.100282
[51]

Muhammad ZI, Maria KS, Mohammad A, Muhammad S, Zia-Ur-Rehman F, et al. 2015. Effect of mercury on seed germination and seedling growth of Mungbean (Vigna radiata (L.) Wilczek). Journal of Applied Sciences and Environmental Management 19:191−99

doi: 10.4314/jasem.v19i2.4
[52]

Kshetrimayum E, Sahoo DP, Mitra J, Panda SK. 2017. Regulation of seed germination and the role of aquaporins under abiotic stress. International Journal of Environment, Agriculture and Biotechnology 2:238710

doi: 10.22161/ijeab/2.2.7
[53]

Hazra A, Dasgupta N, Sengupta C, Das S. 2019. MIPS: Functional dynamics in evolutionary pathways of plant kingdom. Genomics 111:1929−45

doi: 10.1016/j.ygeno.2019.01.004
[54]

Luo Y, Qin G, Zhang J, Liang Y, Song Y, et al. 2011. D-myo-inositol-3-phosphate affects phosphatidylinositol-mediated endomembrane function in Arabidopsis and is essential for auxin-regulated embryogenesis. The Plant Cell 23:1352−72

doi: 10.1105/tpc.111.083337
[55]

Pathak V. 2018. Effect of starch-based hydrogel on early growth of corn. Thesis. Purdue University, US. pp. 45−53. https://docs.lib.purdue.edu/open_access_theses/1433

[56]

Pradhan S, Regmi T, Parmar G, Pant B. 2013. Effect of Different Media on in vitro Seed Germination and Seedling Development of Cymbidium aloifolium (L.) Sw. Nepal Journal of Science and Technology 14:51−56

doi: 10.3126/njst.v14i1.8878
[57]

Gharari Z, Bagheri K, Karimkhanlooei G, Sharafi A. 2021. Study of tissue culture and in vitro organogenesis of Scutellaria bornmuelleri using benzylaminopurine, lsopentenyl adenine and thidiazuron. South African Journal of Botany 139:458−69

doi: 10.1016/j.sajb.2021.03.030
[58]

Ansar A, Touqeer A, Akhtar AN, Ahmed HI. 2009. Effect of different concentrations of auxins on in vitro rooting of olive cultivar 'Moraiolo'. Pakistan Journal of Botany 41:1223−31

[59]

Mosoh DA, Khandel AK, Verma SK, Vendrame WA. 2024. Optimizing callus induction and indirect organogenesis in non-dormant corm explants of Gloriosa superba (L.) via media priming. Frontiers in Horticulture 3:1378098

doi: 10.3389/fhort.2024.1378098
[60]

Mosoh DA, Khandel AK, Verma SK, Vendrame WA. 2024. Phytochemical analysis and enhanced production of alkaloids in non-dormant corm-derived callus of Gloriosa superba (L.) using plant growth regulators and abiotic elicitors. Plant Cell, Tissue and Organ Culture (PCTOC) 156:89

doi: 10.1007/s11240-023-02674-5