[1]

Rastogi A, Shukla S. 2013. Amaranth: a new millennium crop of nutraceutical values. Critical Reviews in Food Science and Nutrition 53:109−25

doi: 10.1080/10408398.2010.517876
[2]

Sarker U, Hossain MN, Iqbal MA, Oba S. 2020. Bioactive components and radical scavenging activity in selected advance lines of salt-tolerant vegetable amaranth. Frontiers in Nutrition 7:587257

doi: 10.3389/fnut.2020.587257
[3]

Sarker U, Lin YP, Oba S, Yoshioka Y, Hoshikawa K. 2022. Prospects and potentials of underutilized leafy Amaranths as vegetable use for health-promotion. Plant Physiology and Biochemistry 182:104−23

doi: 10.1016/j.plaphy.2022.04.011
[4]

Sarker U, Oba S. 2020. Nutraceuticals, phytochemicals, and radical quenching ability of selected drought-tolerant advance lines of vegetable amaranth. BMC Plant Biology 20:564

doi: 10.1186/s12870-020-02780-y
[5]

Velička A, Tarasevičienė Ž, Hallmann E, Kieltyka-Dadasiewicz A. 2022. Impact of foliar application of amino acids on essential oil content, odor profile, and flavonoid content of different mint varieties in field conditions. Plants 11:2938

doi: 10.3390/plants11212938
[6]

Adhikary S, Dasgupta N. 2023. Role of secondary metabolites in plant homeostasis during biotic stress. Biocatalysis and Agricultural Biotechnology 50:102712

doi: 10.1016/j.bcab.2023.102712
[7]

Nabavi SM, Šamec D, Tomczyk M, Milella L, Russo D, et al. 2020. Flavonoid biosynthetic pathways in plants: Versatile targets for metabolic engineering. Biotechnology Advances 38:107316

doi: 10.1016/j.biotechadv.2018.11.005
[8]

Chanoca A, Burkel B, Kovinich N, Grotewold E, Eliceiri KW, et al. 2016. Using fluorescence lifetime microscopy to study the subcellular localization of anthocyanins. The Plant Journal 88:895−903

doi: 10.1111/tpj.13297
[9]

Kurepa J, Shull TE, Smalle JA. 2023. Friends in arms: Flavonoids and the auxin/cytokinin balance in terrestrialization. Plants 12:517

doi: 10.3390/plants12030517
[10]

Xiong C, Li X, Wang X, Wang J, Lambers H, et al. 2022. Flavonoids are involved in phosphorus-deficiency-induced cluster-root formation in white lupin. Annals of Botany 129:101−12

doi: 10.1093/aob/mcab131
[11]

Jiang L, Yanase E, Mori T, Kurata K, Toyama M, et al. 2019. Relationship between flavonoid structure and reactive oxygen species generation upon ultraviolet and X-ray irradiation. Journal of Photochemistry and Photobiology A: Chemistry 384:112044

doi: 10.1016/j.jphotochem.2019.112044
[12]

Yang Z, Bai C, Wang P, Fu W, Wang L, et al. 2021. Sandbur drought tolerance reflects phenotypic plasticity based on the accumulation of sugars, lipids, and flavonoid intermediates and the scavenging of reactive oxygen species in the root. International Journal of Molecular Sciences 22:12615

doi: 10.3390/ijms222312615
[13]

Zhang M, Liu C, Zhang Z, Yang S, Zhang B, et al. 2014. A new flavonoid regulates angiogenesis and reactive oxygen species production. In Oxygen Transport to Tissue XXXVI. Advances in Experimental Medicine and Biology, eds. Swartz HM, Harrison DK, Bruley DF. Vol 812. New York: Springer. pp. 149−55. doi: 10.1007/978-1-4939-0620-8_20

[14]

Wei L, Wang W, Li T, Chen O, Yao S, et al. 2023. Genome-wide identification of the CsPAL gene family and functional analysis for strengthening green mold resistance in citrus fruit. Postharvest Biology and Technology 196:112178

doi: 10.1016/j.postharvbio.2022.112178
[15]

Chen X, Wang P, Gu M, Hou B, Zhang C, et al. 2022. Identification of PAL genes related to anthocyanin synthesis in tea plants and its correlation with anthocyanin content. Horticultural Plant Journal 8:381−94

doi: 10.1016/j.hpj.2021.12.005
[16]

Bartas M, Volna A, Cerven J, Pucker B. 2023. Identification of annotation artifacts concerning the chalcone synthase (CHS). BMC Research Notes 16:109

doi: 10.1186/s13104-023-06386-z
[17]

Ni R, Niu M, Fu J, Tan H, Zhu TT, et al. 2022. Molecular and structural characterization of a promiscuous chalcone synthase from the fern species Stenoloma chusanum. Journal of Integrative Plant Biology 64:1935−51

doi: 10.1111/jipb.13335
[18]

Liu J, Hao XL, He XQ. 2021. Characterization of three chalcone synthase-like genes in Dianthus chinensis. Plant Cell, Tissue and Organ Culture 146:483−92

doi: 10.1007/s11240-021-02081-8
[19]

Lin LM, Guo HY, Song X, Zhang DD, Long YH, et al. 2021. Adaptive evolution of Chalcone Isomerase superfamily in Fagaceae. Biochemical Genetics 59:491−505

doi: 10.1007/s10528-020-10012-z
[20]

Park SI, Park HL, Bhoo SH, Lee SW, Cho MH. 2021. Biochemical and molecular characterization of the rice chalcone isomerase family. Plants 10:2064

doi: 10.3390/plants10102064
[21]

Dai M, Kang X, Wang Y, Huang S, Guo Y, et al. 2022. Functional characterization of Flavanone 3-Hydroxylase (F3H) and its role in anthocyanin and flavonoid biosynthesis in mulberry. Molecules 27:3341

doi: 10.3390/molecules27103341
[22]

Wu L, Tian J, Yu Y, Yuan L, Zhang Y, et al. 2023. Functional characterization of a cold related flavanone 3-hydroxylase from Tetrastigma hemsleyanum: an in vitro, in silico and in vivo study. Biotechnology Letters 45:1565−78

doi: 10.1007/s10529-023-03440-5
[23]

Wang L, Lui AC, Lam PY, Liu G, Godwin ID, et al. 2020. Transgenic expression of flavanone 3-hydroxylase redirects flavonoid biosynthesis and alleviates anthracnose susceptibility in sorghum. Plant Biotechnology Journal 18:2170−72

doi: 10.1111/pbi.13397
[24]

Maoka T. 2020. Carotenoids as natural functional pigments. Journal of Natural Medicines 74:1−16

doi: 10.1007/s11418-019-01364-x
[25]

Wurtzel ET. 2019. Changing form and function through carotenoids and synthetic biology. Plant Physiology 179:830−43

doi: 10.1104/pp.18.01122
[26]

Nguyen KO, Al-Rashid S, Clarke Miller M, Tom Diggs J, Lampert EC. 2019. Trichoplusia ni (Lepidoptera: Noctuidae) qualitative and quantitative sequestration of host plant carotenoids. Environmental Entomology 48:540−45

doi: 10.1093/ee/nvz029
[27]

Wang JY, Lin PY, Al-Babili S. 2021. On the biosynthesis and evolution of apocarotenoid plant growth regulators. Seminars in Cell & Developmental Biology 109:3−11

doi: 10.1016/j.semcdb.2020.07.007
[28]

Ding BY, Niu J, Shang F, Yang L, Chang TY, et al. 2019. Characterization of the geranylgeranyl diphosphate synthase gene in Acyrthosiphon pisum (Hemiptera: Aphididae) and its association with carotenoid biosynthesis. Frontiers in Physiology 10:1398

doi: 10.3389/fphys.2019.01398
[29]

Ezquerro M, Li C, Pérez-Pérez J, Burbano-Erazo E, Barja MV, et al. 2023. Tomato geranylgeranyl diphosphate synthase isoform 1 is involved in the stress-triggered production of diterpenes in leaves and strigolactones in roots. New Phytologist 239:2292−306

doi: 10.1111/nph.19109
[30]

Camagna M, Grundmann A, Bär C, Koschmieder J, Beyer P, et al. 2019. Enzyme fusion removes competition for geranylgeranyl diphosphate in carotenogenesis. Plant Physiology 179:1013−27

doi: 10.1104/pp.18.01026
[31]

Zhou X, Rao S, Wrightstone E, Sun T, Lui ACW, et al. 2022. Phytoene synthase: the key rate-limiting enzyme of carotenoid biosynthesis in plants. Frontiers in Plant Science 13:884720

doi: 10.3389/fpls.2022.884720
[32]

Hou X, Alagoz Y, Welsch R, Mortimer MD, Pogson BJ, et al. 2024. Reducing PHYTOENE SYNTHASE activity fine-tunes the abundance of a cis-carotene-derived signal that regulates the PIF3/HY5 module and plastid biogenesis. Journal of Experimental Botany 75:1187−204

doi: 10.1093/jxb/erad443
[33]

Liang MH, Xie SR, Dai JL, Chen HH, Jiang JG. 2023. Roles of two phytoene synthases and orange protein in carotenoid metabolism of the β-carotene-accumulating Dunaliella salina. Microbiology Spectrum 11:e00069-23

doi: 10.1128/spectrum.00069-23
[34]

Naing AH, Kyu SY, Pe PPW, Park KI, Lee JM, et al. 2019. Silencing of the phytoene desaturase (PDS) gene affects the expression of fruit-ripening genes in tomatoes. Plant Methods 15:110

doi: 10.1186/s13007-019-0491-z
[35]

Guo W, Liu Y, Yan X, Liu M, Tang H, et al. 2015. Cloning and characterization of a phytoene dehydrogenase gene from marine yeast Rhodosporidium diobovatum. Antonie van Leeuwenhoek 107:1017−27

doi: 10.1007/s10482-015-0394-6
[36]

Li C, Li B, Han X. 2016. Advances in phytoene dehydrogenase-A review. Acta Microbiologica Sinica 56:1680−90

doi: 10.13343/j.cnki.wsxb.20160089
[37]

Matthews PD, Luo R, Wurtzel ET. 2003. Maize phytoene desaturase and ζ-carotene desaturase catalyse a poly-Z desaturation pathway: implications for genetic engineering of carotenoid content among cereal crops. Journal of Experimental Botany 54:2215−30

doi: 10.1093/jxb/erg235
[38]

Dong H, Deng Y, Mu J, Lu Q, Wang Y, et al. 2007. The Arabidopsis Spontaneous Cell Death1 gene, encoding a ζ-carotene desaturase essential for carotenoid biosynthesis, is involved in chloroplast development, photoprotection and retrograde signalling. Cell Research 17:458−70

doi: 10.1038/cr.2007.37
[39]

Danova K, Pistelli L. 2022. Plant tissue culture and secondary metabolites production. Plants 11:3312

doi: 10.3390/plants11233312
[40]

Humbal A, Pathak B. 2023. Harnessing nanoparticle-mediated elicitation in plant tissue culture: a promising approach for secondary metabolite production. Plant Cell, Tissue and Organ Culture 155:385−402

doi: 10.1007/s11240-023-02612-5
[41]

Li H, Meng X, Zhang Y, Guo M, Li L. 2023. Active components of Leontopodium alpinum Callus culture extract for blue light damage in human foreskin fibroblasts. Molecules 28:7319

doi: 10.3390/molecules28217319
[42]

Khan RM, Akram M, Faisal M. 2023. Morphological identification and callus induction of most abundant brown seaweed from the coast of Karachi, Pakistan. Life Science Journal of Pakistan 5(2):3−8

[43]

Liu X, Wang P, Li R, Hyden B, An X, et al. 2023. Cellular and metabolic characteristics of peach anther-derived callus. Scientia Horticulturae 311:111796

doi: 10.1016/j.scienta.2022.111796
[44]

Winson KWS, Chew BL, Sathasivam K, Subramaniam S. 2021. Effect of amino acid supplementation, elicitation and LEDs on Hylocereus costaricensis callus culture for the enhancement of betalain pigments. Scientia Horticulturae 289:110459

doi: 10.1016/j.scienta.2021.110459
[45]

Wang G, Liu Y, Gao Z, Li H, Wang J. 2023. Effects of amino acids on callus proliferation and somatic embryogenesis in Litchi chinensis cv 'Feizixiao'. Horticulturae 9:1311

doi: 10.3390/horticulturae9121311
[46]

Yang J, Gong Z, Tan X. 2008. Induction of callus and extraction of alkaloid from Yi Mu Cao (Leonurus heterophylus Sw) culture. African Journal of Biotechnology 7(8):1157−62

[47]

Masoumian M, Arbakariya A, Syahida A, Maziah M. 2011. Effect of precursors on flavonoid production by Hydrocotyle bonariensis callus tissues. African Journal of Biotechnology 10:6021−29

[48]

Xuan Y, Liu S, Xie L, Pan J. 2023. Establishment of Amaranthus spp. calluses and cell suspension culture, and the effect of plant growth regulators on total flavonoid content. Tropical Plants 2:15

doi: 10.48130/tp-2023-0015
[49]

Xiao F , Zheng YF, Chen JL, Chen CL, Chen H, et al. 2021. Selection and validation of reference genes in all-red Amaranth (Amaranthus tricolor L.) seedlings under different culture conditions. The Journal of Horticultural Science and Biotechnology 96(5):604−13

doi: 10.1080/14620316.2021.1879686
[50]

Rahmouni S, El Ansari ZN, Badoc A, Martin P, El Kbiach ML, et al. 2020. Effect of amino acids on secondary somatic embryogenesis of Moroccan cork oak (Quercus suber L.) tree. American Journal of Plant Sciences 11:626−41

doi: 10.4236/ajps.2020.115047
[51]

Satish L, Rathinapriya P, Ceasar SA, Rency AS, Pandian S, et al. 2016. Effects of cefotaxime, amino acids and carbon source on somatic embryogenesis and plant regeneration in four Indian genotypes of foxtail millet (Setaria italica L.). In Vitro Cellular & Developmental Biology-Plant 52:140−53

doi: 10.1007/s11627-015-9724-7
[52]

Aparna V, Neema M, Chandran KP, Muralikrishna KS, Karun A. 2023. Enhancement of callogenesis from plumular explants of coconut (Cocos nucifera) via exogenous supplementation of amino acids and casein hydrolysate. Current Horticulture 11:40−43

doi: 10.5958/2455-7560.2023.00008.0
[53]

Liu S, Zheng X, Pan J, Peng L, Cheng C, et al. 2019. RNA-sequencing analysis reveals betalains metabolism in the leaf of Amaranthus tricolor L. PLoS ONE 14:e0216001

doi: 10.1371/journal.pone.0216001