[1] |
Ermagun A, Levinson D. 2018. Spatiotemporal traffic forecasting: review and proposed directions. Transport Reviews 38(6):786−814 doi: 10.1080/01441647.2018.1442887 |
[2] |
Ou J, Huang X, Zhou Y, Zhou Z, Nie Q. 2022. Traffic volatility forecasting using an omnibus family GARCH modeling framework. Entropy 24:1392 doi: 10.3390/e24101392 |
[3] |
Ghosh B, Basu B, O'Mahony M. 2007. Bayesian time-series model for short-term traffic flow forecasting. Journal of Transportation Engineering 133(3):180−89 doi: 10.1061/(asce)0733-947x(2007)133:3(180) |
[4] |
Lippi M, Bertini M, Frasconi P. 2013. Short-term traffic flow forecasting: an experimental comparison of time-series analysis and supervised learning. IEEE Transactions on Intelligent Transportation Systems 14(2):871−82 doi: 10.1109/TITS.2013.2247040 |
[5] |
LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature 521:436−44 doi: 10.1038/nature14539 |
[6] |
Molnar C. 2022. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. 2nd Edition. https://christophm.github.io/interpretable-ml-book/cite.html |
[7] |
Zhu YQ, Ou JS, Chen G, Yu HP. 2010. An approach for dynamic weighting ensemble classifiers based on cross-validation. Journal of Computational Information Systems 6(1):297−305 |
[8] |
Zhu YQ, Ou JS, Chen G, Yu HP. 2011. Dynamic weighting ensemble classifiers based on cross-validation. Neural Computing and Applications 20:309−17 doi: 10.1007/s00521-010-0372-x |
[9] |
Grinsztajn L, Oyallon E, Varoquaux G. 2022. Why do tree-based models still outperform deep learning on typical tabular data? Proceedings of the 36th International Conference on Neural Information Processing Systems (NIPS '22), New Orleans, LA, USA, 2022. Red Hook, NY, USA: Curran Associates Inc. pp. 507−20. doi: 10.5555/3600270.3600307 |
[10] |
Shwartz-Ziv R, Armon A. 2022. Tabular data: deep learning is not all you need. Information Fusion 81:84−90 doi: 10.1016/j.inffus.2021.11.011 |
[11] |
Tan S, Soloviev M, Hooker G, Wells MT. 2020. Tree space prototypes: another look at making tree ensembles interpretable. Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference, Virtual Event USA, 2020. New York, USA: Association for Computing Machinery. pp. 23−34. doi: 10.1145/3412815.3416893 |
[12] |
Ahmed MS, Cook AR. 1979. Analysis of freeway traffic time-series data by using box-jenkins techniques. Transportation Research Record 1:1−9. https://trid.trb.org/View/148123 |
[13] |
Williams BM, Durvasula PK, Brown DE. 1998. Urban freeway traffic flow prediction: application of seasonal autoregressive integrated moving average and exponential smoothing models. Transportation Research Record: Journal of the Transportation Research Board 1644:132−41 doi: 10.3141/1644-14 |
[14] |
Xia J, Nie Q, Huang W, Qian Z. 2013. Reliable short-term traffic flow forecasting for urban roads: Multivariate generalized autoregressive conditional heteroscedasticity approach. Transportation Research Record: Journal of the Transportation Research Board 2343:77−85 doi: 10.3141/2343-10 |
[15] |
Ma T, Zhou Z, Abdulhai B. 2015. Nonlinear multivariate time–space threshold vector error correction model for short term traffic state prediction. Transportation Research Part B: Methodological 76:27−47 doi: 10.1016/j.trb.2015.02.008 |
[16] |
Ou J, Yang S, Wu YJ, An C, Xia J. 2018. Systematic clustering method to identify and characterise spatiotemporal congestion on freeway corridors. IET Intelligent Transport Systems 12:826−37 doi: 10.1049/iet-its.2017.0355 |
[17] |
Ou J, Lu J, Xia J, An C, Lu Z. 2019. Learn, assign, and search: real-time estimation of dynamic origin-destination flows using machine learning algorithms. IEEE Access 7:26967−83 doi: 10.1109/ACCESS.2019.2901289 |
[18] |
Ou J, Xia J, Wang Y, Wang C, Lu Z. 2020. A data-driven approach to determining freeway incident impact areas with fuzzy and graph theory-based clustering. Computer-Aided Civil and Infrastructure Engineering 35:178−99 doi: 10.1111/mice.12484 |
[19] |
Zheng Z, Su D. 2014. Short-term traffic volume forecasting: a k-nearest neighbor approach enhanced by constrained linearly sewing principle component algorithm. Transportation Research Part C: Emerging Technologies 43:143−57 doi: 10.1016/j.trc.2014.02.009 |
[20] |
Wei D, Liu H. 2013. An adaptive-margin support vector regression for short-term traffic flow forecast. Journal of Intelligent Transportation Systems 17(4):317−27 doi: 10.1080/15472450.2013.771107 |
[21] |
Zhu JZ, Cao JX, Zhu Y. 2014. Traffic volume forecasting based on radial basis function neural network with the consideration of traffic flows at the adjacent intersections. Transportation Research Part C: Emerging Technologies 47:139−54 doi: 10.1016/j.trc.2014.06.011 |
[22] |
Xing Z, Huang M, Peng D. 2023. Overview of machine learning-based traffic flow prediction. Digital Transportation and Safety 2(3):164−75 doi: 10.48130/dts-2023-0013 |
[23] |
Vlahogianni EI, Karlaftis MG, Golias JC. 2014. Short-term traffic forecasting: where we are and where we're going. Transportation Research Part C: Emerging Technologies 43:3−19 doi: 10.1016/j.trc.2014.01.005 |
[24] |
Wang J, Deng W, Guo Y. 2014. New Bayesian combination method for short-term traffic flow forecasting. Transportation Research Part C: Emerging Technologies 43:79−94 doi: 10.1016/j.trc.2014.02.005 |
[25] |
Hou Y, Edara P, Sun C. 2015. Traffic flow forecasting for urban work zones. IEEE Transactions on Intelligent Transportation Systems 16(4):1761−70 doi: 10.1109/TITS.2014.2371993 |
[26] |
Ou J, Xia J, Wu YJ, Rao W. 2017. Short-term traffic flow forecasting for urban roads using data-driven feature selection strategy and bias-corrected random forests. Transportation Research Record: Journal of the Transportation Research Board 2645:157−67 doi: 10.3141/2645-17 |
[27] |
Dong X, Lei T, Jin S, Hou Z. 2018. Short-term traffic flow prediction based on XGBoost. 2018 IEEE 7 th Data Driven Control and Learning Systems Conference (DDCLS), Enshi, China, 2018. USA: IEEE. pp. 854−59. doi: 10.1109/DDCLS.2018.8516114 |
[28] |
Weng J, Feng K, Fu Y, Wang J, Mao L. 2023. Extreme gradient boosting algorithm based urban daily traffic index prediction model: a case study of Beijing, China. Digital Transportation and Safety 2(3):220−28 doi: 10.48130/dts-2023-0018 |
[29] |
Lu Z, Xia J, Wang M, Nie Q, Ou J. 2020. Short-term traffic flow forecasting via multi-regime modeling and ensemble learning. Applied Sciences 10:356 doi: 10.3390/app10010356 |
[30] |
Polson NG, Sokolov VO. 2017. Deep learning for short-term traffic flow prediction. Transportation Research Part C: Emerging Tech nologies 79:1−17 doi: 10.1016/j.trc.2017.02.024 |
[31] |
Zhang S, Zhou L, Chen XM, Zhang L, Li L, et al. 2020. Network-wide traffic speed forecasting: 3D convolutional neural network with ensemble empirical mode decomposition. Computer-Aided Civil and Infrastructure Engineering 35(10):1132−47 doi: 10.1111/mice.12575 |
[32] |
Ma C, Dai G, Zhou J. 2022. Short-term traffic flow prediction for urban road sections based on time series analysis and LSTM_BILSTM method. IEEE Transactions on Intelligent Transportation Systems 23(6):5615−24 doi: 10.1109/TITS.2021.3055258 |
[33] |
Yu B, Yin H, Zhu Z. 2019. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting. Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, Stockholm Sweden, 2019. International Joint Conferences on Artificial Intelligence Organization. pp. 3634−40. doi: 10.24963/ijcai.2018/505 |
[34] |
Liu F, Zhang W, Liu H. 2023. Robust spatiotemporal traffic forecasting with reinforced dynamic adversarial training. Proceedings of the 29 th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Long Beach, CA, USA, 2023. New York, USA: Association for Computing Machinery. pp. 1417−28. doi: 10.1145/3580305.3599492 |
[35] |
Wang B, Zhang Y, Wang X, Wang P, Zhou Z, et al. 2023. Pattern expansion and consolidation on evolving graphs for continual traffic prediction. Proceedings of the 29 th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Long Beach, CA, USA, 2023. New York, USA: Association for Computing Machinery. pp: 2223−32. doi: 10.1145/3580305.3599463 |
[36] |
Wang K, Ma C, Qiao Y, Lu X, Hao W, et al. 2021. A hybrid deep learning model with 1DCNN-LSTM-Attention networks for short-term traffic flow prediction. Physica A: Statistical Mechanics and Its Applications 583:126293 doi: 10.1016/j.physa.2021.126293 |
[37] |
Zhang Y, Wang S, Chen B, Cao J, Huang Z. 2021. TrafficGAN: network-scale deep traffic prediction with generative adversarial nets. IEEE Transactions on Intelligent Transportation Systems 22:219−30 doi: 10.1109/TITS.2019.2955794 |
[38] |
Li Z, Zhou J, Lin Z, Zhou T. 2024. Dynamic spatial aware graph transformer for spatiotemporal traffic flow forecasting. Knowledge-Based Systems 297:111946 doi: 10.1016/j.knosys.2024.111946 |
[39] |
Zhou ZH, Feng J. 2019. Deep forest. National Science Review 6:74−86 doi: 10.1093/nsr/nwy108 |
[40] |
Zhou B, Bau D, Oliva A, Torralba A. 2019. Interpreting deep visual representations via network dissection. IEEE Transactions on Pattern Analysis and Machine Intelligence 41(9):2131−45 doi: 10.1109/TPAMI.2018.2858759 |
[41] |
Wang J, Chen R, He Z. 2019. Traffic speed prediction for urban transportation network: a path based deep learning approach. Transportation Research Part C: Emerging Technologies 100:372−85 doi: 10.1016/j.trc.2019.02.002 |
[42] |
Wang W, Zhang H, Li T, Guo J, Huang W, et al. 2020. An interpretable model for short term traffic flow prediction. Mathematics and Computers in Simulation 171:264−78 doi: 10.1016/j.matcom.2019.12.013 |
[43] |
Li R, Hu Y, Liang Q. 2020. T2F-LSTM method for long-term traffic volume prediction. IEEE Transactions on Fuzzy Systems 28(12):3256−64 doi: 10.1109/TFUZZ.2020.2986995 |
[44] |
Wang J, Peng Z, Wang X, Li C, Wu J. 2021. Deep fuzzy cognitive maps for interpretable multivariate time series prediction. IEEE Transactions on Fuzzy Systems 29:2647−60 doi: 10.1109/TFUZZ.2020.3005293 |
[45] |
Qin D, Peng Z, Wu L. 2023. Deep attention fuzzy cognitive maps for interpretable multivariate time series prediction. Knowledge-Based Systems 275:110700 doi: 10.1016/j.knosys.2023.110700 |
[46] |
Ji J, Wang J, Jiang Z, Jiang J, Zhang H. 2022. STDEN: towards physics-guided neural networks for traffic flow prediction. Proceedings of the AAAI Conference on Artificial Intelligence 36(4):4048−56 doi: 10.1609/aaai.v36i4.20322 |
[47] |
García-Sigüenza J, Llorens-Largo F, Tortosa L, Vicent JF. 2023. Explainability techniques applied to road traffic forecasting using Graph Neural Network models. Information Sciences 645:119320 doi: 10.1016/j.ins.2023.119320 |
[48] |
Tygesen MN, Pereira FC, Rodrigues F. 2023. Unboxing the graph: towards interpretable graph neural networks for transport prediction through neural relational inference. Transportation Research Part C: Emerging Technologies 146:103946 doi: 10.1016/j.trc.2022.103946 |
[49] |
Yang S, Wu J, Du Y, He Y, Chen X. 2017. Ensemble learning for short-term traffic prediction based on gradient boosting machine. Journal of Sensors 2017:7074143 doi: 10.1155/2017/7074143 |
[50] |
Chikaraishi M, Garg P, Varghese V, Yoshizoe K, Urata J, et al. 2020. On the possibility of short-term traffic prediction during disaster with machine learning approaches: an exploratory analysis. Transport Policy 98:91−104 doi: 10.1016/j.tranpol.2020.05.023 |
[51] |
Zou L, Shu S, Lin X, Lin K, Zhu J, et al. 2022. Passenger flow prediction using smart card data from connected bus system based on interpretable XGBoost. Wireless Communications and Mobile Computing 2022:5872225 doi: 10.1155/2022/5872225 |
[52] |
Fan C, Xu J, Natarajan BY, Mostafavi A. 2023. Interpretable machine learning learns complex interactions of urban features to understand socio-economic inequality. Computer-Aided Civil and Infrastructure Engineering 38(14):2013−29 doi: 10.1111/mice.12972 |
[53] |
Chen Z, Chang R, Pei X, Yu Z, Guo H, et al. 2023. Tunnel geothermal disaster susceptibility evaluation based on interpretable ensemble learning: a case study in Ya'an–Changdu section of the Sichuan–Tibet traffic corridor. Engineering Geology 313:106985 doi: 10.1016/j.enggeo.2023.106985 |
[54] |
Gorishniy Y, Rubachev I, Khrulkov V, Babenko A. 2021. Revisiting deep learning models for tabular data. Advances in Neural Information Processing Systems 34:18932−43 doi: 10.5555/3540261.3541708 |
[55] |
Pavlyuk D. 2022. Robust and responsive learning of spatiotemporal urban traffic flow relationships. IEEE Transactions on Intelligent Transportation Systems 23(9):14524−41 doi: 10.1109/TITS.2021.3130146 |
[56] |
Manibardo EL, Laña I, Del Ser J. 2022. Deep learning for road traffic forecasting: does it make a difference? IEEE Transactions on Intelligent Transportation Systems 23(7):6164−88 doi: 10.1109/TITS.2021.3083957 |
[57] |
Fang S, Prinet V, Chang J, Werman M, Zhang C, et al. 2022. MS-net: multi-source spatio-temporal network for traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems 23:7142−55 doi: 10.1109/TITS.2021.3067024 |
[58] |
Guo S, Lin Y, Wan H, Li X, Cong G. 2022. Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting. IEEE Transactions on Knowledge and Data Engineering 34(11):5415−28 doi: 10.1109/TKDE.2021.3056502 |
[59] |
Wang J, Ji J, Jiang Z, Sun L. 2023. Traffic flow prediction based on spatiotemporal potential energy fields. IEEE Transactions on Knowledge and Data Engineering 35(9):9073−87 doi: 10.1109/TKDE.2022.3221183 |
[60] |
Shapley LS. 1953. A value for n-person games. In Contributions to the Theory of Games (AM-28), eds. Kuhn HW, Tucker AW. Volume II. Princeton: Princeton University Press. pp 307−18. doi: 10.1515/9781400881970-018 |
[61] |
Lundberg SM, Lee SI. 2017. A unified approach to interpreting model predictions. 31 st Conference on Neural Information Processing Systems (NIPS 2017), Curran Associates Inc, Red Hook, Long Beach, CA, USA, 2017. pp. 4768−77. https://dl.acm.org/doi/10.5555/3295222.3295230 |
[62] |
Lundberg SM, Erion G, Chen H, DeGrave A, Prutkin JM, et al. 2020. From local explanations to global understanding with explainable AI for trees. Nature Machine Intelligence 2(1):56−67 doi: 10.1038/s42256-019-0138-9 |
[63] |
Lai G, Chang WC, Yang Y, Liu H. 2018. Modeling long- and short-term temporal patterns with deep neural networks. The 41 st International ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor, MI, USA, 2018. New York, USA: Association for Computing Machinery. pp. 1−10. doi: 10.1145/3209978.3210006 |
[64] |
Salinas D, Flunkert V, Gasthaus J, Januschowski T. 2020. DeepAR: Probabilistic forecasting with autoregressive recurrent networks. International Journal of Forecasting 36(3):1181−91 doi: 10.1016/j.ijforecast.2019.07.001 |
[65] |
Oreshkin BN, Carpo D, Chapados N, Bengio Y. 2019. N-BEATS: Neural basis expansion analysis for interpretable time series forecasting. 8th International Conference on Learning Representations (ICLR 2020), Addis Ababa, Ethiopia, 2019. pp. 1-11. https://openreview.net/forum?id=r1ecqn4YwB |
[66] |
Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, et al. 2017. Attention is all you need. NIPS'17: Proceedings of the 31 st International Conference on Neural Information Processing Systems, Long Beach, California, USA, 2017. Long Beach, CA, USA: Curran Associates Inc. pp. 6000−10. https://dl.acm.org/doi/10.5555/3295222.3295349 |
[67] |
Hyndman RJ, Khandakar Y. 2008. Automatic time series forecasting: The forecast package for R. Journal of Statistical Software 27(1):1−22 doi: 10.18637/jss.v027.i03 |
[68] |
Bi R, Xu T, Xu M, Chen E. 2022. PaddlePaddle: a production-oriented deep learning platform facilitating the competency of enterprises. 2022 IEEE 24th Int Conf on High Performance Computing & Communications; 8 th Int Conf on Data Science & Systems; 20 th Int Conf on Smart City; 8 th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys). Hainan, China, 2022. USA: IEEE. pp. 92−99. doi: 10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00046 |
[69] |
Lu J, Nie Q, Wang Y, Xia J, Lu Z, et al. 2023. Reliable traffic state identification using high-resolution data: a consistent offline-online dynamic time warping–based time series clustering approach. Transportation Research Record: Journal of the Transportation Research Board 2677(8):509−24 doi: 10.1177/03611981231156916 |