[1] |
Ali Y, Zheng Z, Haque MM, Wang M. 2019. A game theory-based approach for modelling mandatory lane-changing behaviour in a connected environment. Transportation Research Part C: Emerging Technologies 106:220−42 doi: 10.1016/j.trc.2019.07.011 |
[2] |
Fu X, Liu J, Huang Z, Hainen A, Khattak AJ. 2023. LSTM-based lane change prediction using Waymo open motion dataset: the role of vehicle operating space. Digital Transportation and Safety 2:112−23 doi: 10.48130/dts-2023-0009 |
[3] |
Mullakkal-Babu FA, Wang M, van Arem B, Happee R. 2020. Empirics and models of fragmented lane changes. IEEE Open Journal of Intelligent Transportation Systems 1:187−200 doi: 10.1109/ojits.2020.3029056 |
[4] |
Wang Z, Guan M, Lan J, Yang B, Kaizuka T, et al. 2022. Classification of automated lane-change styles by modeling and analyzing truck driver behavior: a driving simulator study. IEEE Open Journal of Intelligent Transportation Systems 3:772−85 doi: 10.1109/OJITS.2022.3222442 |
[5] |
An G, Bae JH, Talebpour A. 2023. An optimized car-following behavior in response to a lane-changing vehicle: a Bézier curve-based approach. IEEE Open Journal of Intelligent Transportation Systems 4:682−89 doi: 10.1109/OJITS.2023.3291177 |
[6] |
Gipps PG. 1986. A model for the structure of lane-changing decisions. Transportation Research Part B: Methodological 20:403−14 doi: 10.1016/0191-2615(86)90012-3 |
[7] |
Yang Q, Koutsopoulos HN. 1996. A Microscopic Traffic Simulator for evaluation of dynamic traffic management systems. Transportation Research Part C: Emerging Technologies 4:113−29 doi: 10.1016/s0968-090x(96)00006-x |
[8] |
Kesting A, Treiber M, Helbing D. 2007. General lane-changing model MOBIL for car-following models. Transportation Research Record: Journal of the Transportation Research Board 1999:86−94 doi: 10.3141/1999-10 |
[9] |
Toledo T, Koutsopoulos HN, Ben-Akiva ME. 2003. Modeling integrated lane-changing behavior. Transportation Research Record: Journal of the Transportation Research Board 1857:30−38 doi: 10.3141/1857-04 |
[10] |
Kita H. 1999. A merging–giveway interaction model of cars in a merging section: a game theoretic analysis. Transportation Research Part A: Policy and Practice 33:305−12 doi: 10.1016/s0965-8564(98)00039-1 |
[11] |
Liu HX, Xin W, Adams ZM, Ban J. 2007. A game theoretical approach for modelling merging and yielding behavior at freeway on-ramp sections. pp. 1−15. |
[12] |
Hou Y, Edara P, Sun C. 2014. Modeling mandatory lane changing using Bayes classifier and decision trees. IEEE Transactions on Intelligent Transportation Systems 15:647−55 doi: 10.1109/TITS.2013.2285337 |
[13] |
Dou Y, Yan F, Feng D. 2016. Lane changing prediction at highway lane drops using support vector machine and artificial neural network classifiers. 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Banff, AB, Canada, 12−15 July 2016. USA: IEEE. pp. 901−6. DOI: 10.1109/AIM.2016.7576883 |
[14] |
Li X, Wang W, Roetting M. 2019. Estimating driver's lane-change intent considering driving style and contextual traffic. IEEE Transactions on Intelligent Transportation Systems 20:3258−71 doi: 10.1109/TITS.2018.2873595 |
[15] |
Yang Y, Perdikaris P. 2019. Adversarial uncertainty quantification in physics-informed neural networks. Journal of Computational Physics 394:136−52 doi: 10.1016/j.jcp.2019.05.027 |
[16] |
Raissi M, Wang Z, Triantafyllou MS, Karniadakis GE. 2019. Deep learning of vortex-induced vibrations. Journal of Fluid Mechanics 861:119−37 doi: 10.1017/jfm.2018.872 |
[17] |
Shi R, Mo Z, Huang K, Di X, Du Q. 2021. Physics-informed deep learning for traffic state estimation. arXiv Preprint:2101.06580 doi: 10.48550/arXiv.2101.06580 |
[18] |
Yuan Y, Wang Q, Yang XT. 2020. Modeling stochastic microscopic traffic behaviors: a physics regularized Gaussian process approach. arXiv Preprint:2007.10109 doi: 10.48550/arXiv.2007.10109 |
[19] |
Mo Z, Shi R, Di X. 2020. A physics-informed deep learning paradigm for car-following models. Transportation Research Part C: Emerging Technologies 130:103240 doi: 10.1016/j.trc.2021.103240 |
[20] |
Masmoudi M, Friji H, Ghazzai H, Massoud Y. 2021. A reinforcement learning framework for video frame-based autonomous car-following. IEEE Open Journal of Intelligent Transportation Systems 2:111−27 doi: 10.1109/OJITS.2021.3083201 |
[21] |
Dempster AP, Laird NM, Rubin DB. 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society Series B: Statistical Methodology 39:1−22 doi: 10.1111/j.2517-6161.1977.tb01600.x |
[22] |
Yang MS, Lai CY, Lin CY. 2012. A robust EM clustering algorithm for Gaussian mixture models. Pattern Recognition 45:3950−61 doi: 10.1016/j.patcog.2012.04.031 |
[23] |
Sagberg F, Selpi, Bianchi Piccinini GF, Engström J. 2015. A review of research on driving styles and road safety. Human Factors 57:1248−75 doi: 10.1177/0018720815591313 |
[24] |
Taylor PD, Jonker LB. 1978. Evolutionary stable strategies and game dynamics. Mathematical Biosciences 40:145−56 doi: 10.1016/0025-5564(78)90077-9 |
[25] |
Hayward J. 1972. Near-miss determination through use of a scale of danger. Highway Research Record 1:1−2 |
[26] |
Zheng Y, Han L, Yu J, Yu R. 2023. Driving risk assessment under the connected vehicle environment: a CNN-LSTM modeling approach. Digital Transportation and Safety 2:211−19 doi: 10.48130/dts-2023-0017 |
[27] |
Alexiadis V, Colyar J, Halkias J, Hranac R, McHale G. 2004. The next generation simulation program. ITE Journal 74:22−26 |
[28] |
Ossen S, Hoogendoorn SP. 2008. Validity of trajectory-based calibration approach of car-following models in presence of measurement errors. Transportation Research Record: Journal of the Transportation Research Board 2088:117−25 doi: 10.3141/2088-13 |
[29] |
Wang Q, Li Z, Li L. 2014. Investigation of discretionary lane-change characteristics using next-generation simulation data sets. Journal of Intelligent Transportation Systems 18:246−53 doi: 10.1080/15472450.2013.810994 |
[30] |
McCulloch WS, Pitts W. 1943. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics 5:115−33 doi: 10.1016/S0092-8240(05)80006-0 |
[31] |
Breiman L. 2001. Random forests. Machine Learning 45:5−32 doi: 10.1023/A:1010933404324 |
[32] |
Ke G, Meng Q, Finley T, Wang T, Chen W, et al. 2017. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. 31 st Conference on Neural Information Processing Systems (NiPs 2017), Long Beach, California, USA, 4−9 December, 2017. pp. 3149−57. DOI: 10.5555/3294996.3295074 |
[33] |
Chen T, Guestrin C. 2016. XGBoost: A Scalable Tree Boosting System. Proceedings of the 22 nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco California USA. USA: Association for Computing Machinery (ACM). pp. 785–94. https://doi.org/10.1145/2939672.2939785 |