[1] |
Ngo PA, Neurath MF, López-Posadas R. 2022. Impact of Epithelial Cell Shedding on Intestinal Homeostasis. International Journal of Molecular Sciences 23:4160 doi: 10.3390/ijms23084160 |
[2] |
Lopes C, Almeida TC, Pimentel-Nunes P, Dinis-Ribeiro M, Pereira C. 2023. Linking dysbiosis to precancerous stomach through inflammation: Deeper than and beyond imaging. Frontiers in Immunology 14:1134785 doi: 10.3389/fimmu.2023.1134785 |
[3] |
Graziani F, Pinton P, Olleik H, Pujo A, Nicoletti C, et al. 2019. Deoxynivalenol inhibits the expression of trefoil factors (TFF) by intestinal human and porcine goblet cells. Archives of Toxicology 93:1039−49 doi: 10.1007/s00204-019-02425-6 |
[4] |
Miao W, Han Y, Yang Y, Hao Z, An N, et al. 2022. Dynamic changes in colonic structure and protein expression suggest regulatory mechanisms of colonic barrier function in torpor-arousal cycles of the daurian ground squirrel. International Journal of Molecular Sciences 23:9026 doi: 10.3390/ijms23169026 |
[5] |
An J, Liu Y, Wang Y, Fan R, Hu X, et al. 2022. The role of intestinal mucosal barrier in autoimmune disease: a potential target. Frontiers in Immunology 13:871713 doi: 10.3389/fimmu.2022.871713 |
[6] |
Hu Y, He Z, Zhang J, Zhang C, Wang Y, et al. 2023. Effect of Piper nigrum essential oil in dextran sulfate sodium (DSS)-induced colitis and its potential mechanisms. Phytomedicine 119:155024 doi: 10.1016/j.phymed.2023.155024 |
[7] |
Zhang Z, Zuo L, Song X, Wang L, Zhang Y, et al. 2024. Arjunolic acid protects the intestinal epithelial barrier, ameliorating Crohn's disease-like colitis by restoring gut microbiota composition and inactivating TLR4 signalling. Phytomedicine 123:155223 doi: 10.1016/j.phymed.2023.155223 |
[8] |
Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, et al. 2005. Notch signals control the fate of immature progenitor cells in the intestine. Nature 435:964−968 doi: 10.1038/nature03589 |
[9] |
Ning H, Liu J, Tan J, Yi M, Lin X. 2024. The role of the Notch signalling pathway in the pathogenesis of ulcerative colitis: from the perspective of intestinal mucosal barrier. Frontiers in Medicine 10:1333531 doi: 10.3389/fmed.2023.1333531 |
[10] |
Zhang S, Zhang S, Hou Y, Huang Y, Cai J, et al. 2023. Porcine deltacoronavirus infection disrupts the intestinal mucosal barrier and inhibits intestinal stem cell differentiation to goblet cells via the notch signaling pathway. Journal of Virology 97:e0068923 doi: 10.1128/jvi.00689-23 |
[11] |
Ahmed I, Roy BC, Raach RMT, Owens SM, Xia LJ, et al. 2018. Enteric infection coupled with chronic Notch pathway inhibition alters colonic mucus composition leading to dysbiosis, barrier disruption and colitis. PLoS One 13:e0206701 doi: 10.1371/journal.pone.0206701 |
[12] |
Dandawate P, Subramaniam D, Panovich P, Standing D, Krishnamachary B, et al. 2020. Cucurbitacin B and I inhibits colon cancer growth by targeting the Notch signaling pathway. Scientific Reports 10:1290 doi: 10.1038/s41598-020-57940-9 |
[13] |
Avila-Carrasco L, Majano P, Sánchez-Toméro JA, Selgas R, López-Cabrera M, et al. 2019. Natural plants compounds as modulators of epithelial-to-mesenchymal transition. Frontiers in Pharmacology 10:715 doi: 10.3389/fphar.2019.00715 |
[14] |
Li Y, Wang Z, Jin J, Zhu SX, He GQ, et al. 2020. Quercetin pretreatment enhances the radiosensitivity of colon cancer cells by targeting Notch-1 pathway. Biochemical and Biophysical Research Communications 523:947−53 doi: 10.1016/j.bbrc.2020.01.048 |
[15] |
Jideani AIO, Silungwe H, Takalani T, Omolola AO, Udeh HO, et al. 2021. Antioxidant-rich natural fruit and vegetable products and human health. International Journal of Food Properties 24:41−67 doi: 10.1080/10942912.2020.1866597 |
[16] |
Ren S, Giusti MM. 2021. The effect of whey protein concentration and preheating temperature on the color and stability of purple corn, grape and black carrot anthocyanins in the presence of ascorbic acid. Food Research International 144:110350 doi: 10.1016/j.foodres.2021.110350 |
[17] |
Fallah AA, Sarmast E, Jafari T. 2020. Effect of dietary anthocyanins on biomarkers of oxidative stress and antioxidative capacity: A systematic review and meta-analysis of randomized controlled trials. Journal of Functional Foods 68:103912 doi: 10.1016/j.jff.2020.103912 |
[18] |
Tang S, Kan J, Sun R, Cai HH, Hong JH, et al. 2021. Anthocyanins from purple sweet potato alleviate doxorubicin-induced cardiotoxicity in vitro and in vivo. Journal of Food Biochemistry 45:e13869 doi: 10.1111/jfbc.13869 |
[19] |
Liu J, Zhang W, Jing H, Popovich DG. 2010. Bog bilberry (Vaccinium uliginosum L.) extract reduces cultured hep-g2, caco-2, and 3t3-l1 cell viability, affects cell cycle progression, and has variable effects on membrane permeability. Journal of Food Science 75:H103−H107 doi: 10.1111/j.1750-3841.2010.01546.x |
[20] |
Chen J, Zhao Y, Tao X, Zhang M, Sun AD. 2015. Protective effect of blueberry anthocyanins in a CCL4-induced liver cell model. LWT - Food Science and Technology 60:1105−12 doi: 10.1016/j.lwt.2014.10.010 |
[21] |
Lin J, Tian J, Shu C, Cheng Z, Liu Y, et al. 2020. Malvidin-3-galactoside from blueberry suppresses the growth and metastasis potential of hepatocellular carcinoma cell Huh-7 by regulating apoptosis and metastases pathways. Food Science and Human Wellness 9:136−45 doi: 10.1016/j.fshw.2020.02.004 |
[22] |
Cheng Z, Lin J, Gao N, Sun X, Meng X, et al. 2020. Blueberry malvidin-3-galactoside modulated gut microbial dysbiosis and microbial TCA cycle KEGG pathway disrupted in a liver cancer model induced by HepG2 cells. Food Science and Human Wellness 9:245−55 doi: 10.1016/j.fshw.2020.04.006 |
[23] |
Huang WY, Liu YM, Wang J, Wang XN, Li CY. 2014. Anti-inflammatory effect of the blueberry anthocyanins malvidin-3-glucoside and malvidin-3-galactoside in endothelial cells. Molecules 19:12827−41 doi: 10.3390/molecules190812827 |
[24] |
Li F, Sun Q, Chen L, Zhang R, Zhang Z. 2024. Unlocking the health potential of anthocyanins: a structural insight into their varied biological effects. Critical Reviews In Food Science And Nutrition 00:1−21 doi: 10.1080/10408398.2024.2328176 |
[25] |
Li J, Wu T, Li N, Wang X, Chen G, et al. 2019. Bilberry anthocyanin extract promotes intestinal barrier function and inhibits digestive enzyme activity by regulating the gut microbiota in aging rats. Food & Function 10:333−43 doi: 10.1039/c8fo01962b |
[26] |
Cremonini E, Daveri E, Mastaloudis A, Adamo AM, Mills D, et al. 2019. Anthocyanins protect the gastrointestinal tract from high fat diet-induced alterations in redox signaling, barrier integrity and dysbiosis. Redox Biology 26:101269 doi: 10.1016/j.redox.2019.101269 |
[27] |
Valdez JC, Cho J, Bolling BW. 2020. Aronia berry inhibits disruption of Caco-2 intestinal barrier function. Archives of Biochemistry And Biophysics 688:108409 doi: 10.1016/j.abb.2020.108409 |
[28] |
Ayvaz H, Cabaroglu T, Akyildiz A, Pala CU, Temizkan R, et al. 2022. Anthocyanins: Metabolic Digestion, Bioavailability, Therapeutic Effects, Current Pharmaceutical/Industrial Use, and Innovation Potential. Antioxidants 12:48 doi: 10.3390/antiox12010048 |
[29] |
Verediano TA, Stampini Duarte Martino H, Dias Paes MC, Tako E. 2021. Effects of Anthocyanin on Intestinal Health: A Systematic Review. Nutrients 13:1331 doi: 10.3390/nu13041331 |
[30] |
Wan MLY, Ling KH, El-Nezami H, Wang MF. 2019. Influence of functional food components on gut health. Critical Reviews in Food Science and Nutrition 59:1927−36 doi: 10.1080/10408398.2018.1433629 |
[31] |
Adolph TE, Zhang J. 2022. Diet fuelling inflammatory bowel diseases: preclinical and clinical concepts. Gut 71:2574−86 doi: 10.1136/gutjnl-2021-326575 |
[32] |
Ye C, Liu L, Ma X, Tong H, Gao J, et al. 2019. Obesity aggravates acute pancreatitis via damaging intestinal mucosal barrier and changing microbiota composition in rats. Scientific Reports 9:69 doi: 10.1038/s41598-018-36266-7 |
[33] |
Horowitz A, Chanez-Paredes SD, Haest X, Turner JR. 2023. Paracellular permeability and tight junction regulation in gut health and disease. Nature Reviews Gastroenterology & Hepatology 20:417−32 doi: 10.1038/s41575-023-00766-3 |
[34] |
Walmsley RS, Ayres RC, Pounder RE, Allan RN. 1998. A simple clinical colitis activity index. Gut 43:29−32 doi: 10.1136/gut.43.1.29 |
[35] |
Zhao L, Zhang Y, Liu G, Hao S, Wang C, et al. 2018. Black rice anthocyanin-rich extract and rosmarinic acid, alone and in combination, protect against DSS-induced colitis in mice. Food & Function 9:2796−808 doi: 10.1039/c7fo01490b |
[36] |
Noah TK, Donahue B, Shroyer NF. 2011. Intestinal development and differentiation. Experimental Cell Research 317:2702−2710 doi: 10.1016/j.yexcr.2011.09.006 |
[37] |
Okumura R, Takeda K. 2017. Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Experimental & Molecular Medicine 49:e338 doi: 10.1038/emm.2017.20 |
[38] |
Rivera CA, Lennon-Duménil AM. 2023. Gut immune cells and intestinal niche imprinting. Seminars In Cell & Developmental Bio logy 150−151:50−57 doi: 10.1016/j.semcdb.2023.01.006 |
[39] |
Slifer ZM, Blikslager AT. 2020. The Integral Role of Tight Junction Proteins in the Repair of Injured Intestinal Epithelium. International Journal of Molecular Sciences 21:972 doi: 10.3390/ijms21030972 |
[40] |
Wang Y, Gao N, Nieto-Veloza A, Zhou L, Sun X, et al. 2023. Lonicera caerulea polyphenols inhibit fat absorption by regulating Nrf2-ARE pathway mediated epithelial barrier dysfunction and special microbiota. Food Science and Human Wellness 12:1309−22 doi: 10.1016/j.fshw.2022.10.013 |
[41] |
Chen T, Shen M, Yu Q, Chen Y, Wen H, et al. 2022. Purple red rice anthocyanins alleviate intestinal damage in cyclophosphamide-induced mice associated with modulation of intestinal barrier function and gut microbiota. Food Chemistry 397:133768 doi: 10.1016/j.foodchem.2022.133768 |
[42] |
Logan M, MacKinder M, Clark CM, Kountouri A, Jere M, et al. 2022. Intestinal fatty acid binding protein is a disease biomarker in paediatric coeliac disease and Crohn's disease. BMC Gastroenter ology 22:260 doi: 10.1186/s12876-022-02334-6 |
[43] |
Wang Y, Liang K, Kong W. 2019. Intestinal Trefoil Factor 3 Alleviates the Intestinal Barrier Function Through Reducing the Expression of TLR4 in Rats with Nonalcoholic Steatohepatitis. Archives of Medical Research 50:2−9 doi: 10.1016/j.arcmed.2019.03.004 |
[44] |
Wardill HR, Choo JM, Dmochowska N, Mavrangelos C, Campaniello MA, et al. 2019. Acute Colitis Drives Tolerance by Persistently Altering the Epithelial Barrier and Innate and Adaptive Immunity. Inflammatory Bowel Diseases 25:1196−207 doi: 10.1093/ibd/izz011 |
[45] |
Gan Q, Song G, Fang W, Wang Y, Qi W. 2024. Fructose dose-dependently influences colon barrier function by regulation of some main physical, immune, and biological factors in rats. Journal of Nutritional Biochemistry 126:109582 doi: 10.1016/j.jnutbio.2024.109582 |
[46] |
Pu Z, Yang F, Wang L, Diao Y, Chen D. 2021. Advancements of compounds targeting Wnt and Notch signalling pathways in the treatment of inflammatory bowel disease and colon cancer. Journal of Drug Targeting 29:507−19 doi: 10.1080/1061186X.2020.1864741 |
[47] |
Artavanis-Tsakonas S, Rand MD, Lake RJ. 1999. Notch signaling: cell fate control and signal integration in development. Science 284:770−76 doi: 10.1126/science.284.5415.770 |
[48] |
Bray SJ. 2006. Notch signalling: a simple pathway becomes complex. Nature Reviews Molecular Cell Biology 7:678−89 doi: 10.1038/nrm2009 |
[49] |
Carulli AJ, Keeley TM, Demitrack ES, Chung J, Maillard I, et al. 2015. Notch receptor regulation of intestinal stem cell homeostasis and crypt regeneration. Developmental Biology 402:98−108 doi: 10.1016/j.ydbio.2015.03.012 |
[50] |
Andersson ER, Lendahl U. 2014. Therapeutic modulation of Notch signalling-are we there yet? Nature Reviews Drug Discovery 13:357−78 doi: 10.1038/nrd4252 |
[51] |
Lin JC, Wu JQ, Wang F, Tang FY, Sun J, et al. 2019. QingBai decoction regulates intestinal permeability of dextran sulphate sodium-induced colitis through the modulation of notch and NF-κ B signalling. Cell Proliferation 52:e12547 doi: 10.1111/cpr.12547 |