[1]

Igarashi M, Hatsuyama Y, Harada T, Fukasawa-Akada T. 2016. Biotechnology and apple breeding in Japan. Breeding Science 66:18−33

doi: 10.1270/jsbbs.66.18
[2]

Wang Y, Li W, Xu X, Qiu C, Wu T, et al. 2019. Progress of apple rootstock breeding and its use. Horticultural Plant Journal 5:183−91

doi: 10.1016/j.hpj.2019.06.001
[3]

Matveeva TV, Lutova LA. 2014. Horizontal gene transfer from Agrobacterium to plants. Frontiers in Plant Science 5:326

doi: 10.3389/fpls.2014.00326
[4]

Tomilov A, Tomilova N, Yoder JI. 2007. Agrobacterium tumefaciens and Agrobacterium rhizogenes transformed roots of the parasitic plant Triphysaria versicolor retain parasitic competence. Planta 225:1059−71

doi: 10.1007/s00425-006-0415-9
[5]

Tinland B. 1996. The integration of T-DNA into plant genomes. Trends in Plant Science 1:178−84

doi: 10.1016/1360-1385(96)10020-0
[6]

Dai H, Li W, Han G, Yang Y, Ma Y, et al. 2013. Development of a seedling clone with high regeneration capacity and susceptibility to Agrobacterium in apple. Scientia Horticulturae 164:202−08

doi: 10.1016/j.scienta.2013.09.033
[7]

Gong J, Chen Y, Xu Y, Gu M, Ma H, et al. 2024. Tracking organelle activities through efficient and stable root genetic transformation system in woody plants. Horticulture Research 11:uhad262

doi: 10.1093/hr/uhad262
[8]

Boulanger F, Berkaloff A, Richaud F. 1986. Identification of hairy root loci in the T-regions of Agrobacterium rhizogenes Ri plasmids. Plant Molecular Biology 6:271−79

doi: 10.1007/BF00015233
[9]

Cardarelli M, Mariotti D, Pomponi M, Spanò L, Capone I, et al. 1987. Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype. Molecular Genetics and Genomics 209:475−80

doi: 10.1007/BF00331152
[10]

Huffman GA, White FF, Gordon MP, Nester EW. 1984. Hairy-root-inducing plasmid: physical map and homology to tumor-inducing plasmids. Journal of Bacteriology 157:269−76

doi: 10.1128/jb.157.1.269-276.1984
[11]

White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW. 1985. Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. Journal of Bacteriology 164:33−44

doi: 10.1128/jb.164.1.33-44.1985
[12]

Maurel C, Leblanc N, Barbier-Brygoo H, Perrot-Rechenmann C, Bouvier-Durand M, et al. 1994. Alterations of auxin perception in rolB-transformed tobacco protoplasts (time course of rolB mRNA expression and increase in auxin sensitivity reveal multiple control by auxin). Plant Physiology 105:1209−15

doi: 10.1104/pp.105.4.1209
[13]

Chandra S. 2012. Natural plant genetic engineer Agrobacterium rhizogenes: role of T-DNA in plant secondary metabolism. Biotechnology Letters 34:407−15

doi: 10.1007/s10529-011-0785-3
[14]

Akbari M, Maejima T, Otagaki S, Shiratake K, Matsumoto S. 2015. efficient rooting system for apple "M.9" rootstock using rice seed coat and smocked rice seed coat. International Journal of Agronomy 2015:107906

doi: 10.1155/2015/107906
[15]

Pincelli-Souza RP, Tang Q, Miller BM, Cohen JD. 2024. Horticultural potential of chemical biology to improve adventitious rooting. Horticulture Advances 2:12

doi: 10.1007/s44281-024-00034-7
[16]

Guan L, Li Y, Huang K, Cheng ZM. 2020. Auxin regulation and MdPIN expression during adventitious root initiation in apple cuttings. Horticulture Research 7:143

doi: 10.1038/s41438-020-00364-3
[17]

Mao J, Zhang D, Meng Y, Li K, Wang H, et al. 2019. Inhibition of adventitious root development in apple rootstocks by cytokinin is based on its suppression of adventitious root primordia formation. Physiologia Plantarum 166:663−76

doi: 10.1111/ppl.12817
[18]

Li W, Fang C, Krishnan S, Chen J, Yu H, et al. 2017. Elevated auxin and reduced cytokinin contents in rootstocks improve their performance and grafting success. Plant Biotechnology Journal 15:1556−65

doi: 10.1111/pbi.12738
[19]

Kieber JJ, Schaller GE. 2014. Cytokinins. The Arabidopsis Book 12:e0168

doi: 10.1199/tab.0168
[20]

Abdelrahman M, Nishiyama R, Tran CD, Kusano M, Nakabayashi R, et al. 2021. Defective cytokinin signaling reprograms lipid and flavonoid gene-to-metabolite networks to mitigate high salinity in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 118:e2105021118

doi: 10.1073/pnas.2105021118
[21]

Ashikari M, Sakakibara H, Lin SY, Yamamoto T, Takashi T, et al. 2005. Cytokinin oxidase regulates rice grain production. Science 309:741−45

doi: 10.1126/science.1113373
[22]

Wang X, Ding J, Lin S, Liu D, Gu T, et al. 2020. Evolution and roles of cytokinin genes in angiosperms 2: do ancient CKXs play housekeeping roles while non-ancient CKXs play regulatory roles? Horticulture Research 7:29

doi: 10.1038/s41438-020-0246-z
[23]

Werner T, Motyka V, Strnad M, Schmülling T. 2001. Regulation of plant growth by cytokinin. Proceedings of the National Academy of Sciences of the United States of America 98:10487−92

doi: 10.1073/pnas.17130409
[24]

Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, et al. 2007. Cytokinins act directly on lateral root founder cells to inhibit root initiation. The Plant Cell 19:3889−900

doi: 10.1105/tpc.107.055863
[25]

Zhao J, Li G, Yi GX, Wang BM, Deng AX, et al. 2006. Comparison between conventional indirect competitive enzyme-linked immunosorbent assay (icELISA) and simplified icELISA for small molecules. Analytica Chimica Acta 571:79−85

doi: 10.1016/j.aca.2006.04.060
[26]

Wang D, Wang G, Sun S, Lu X, Liu Z, et al. 2024. Research progress on cuttings of Malus rootstock resources in China. Horticulturae 10:217

doi: 10.3390/horticulturae10030217
[27]

Wang H, Zheng Y, Zhou Q, Li Y, Liu T, et al. 2024. Fast, simple, efficient Agrobacterium rhizogenes-mediated transformation system to non-heading Chinese cabbage with transgenic roots. Horticultural Plant Journal 10:450−60

doi: 10.1016/j.hpj.2023.03.018
[28]

De Bondt A, Eggermont K, Penninckx I, Goderis I, Broekaert WF. 1996. Agrobacterium-mediated transformation of apple (Malus × domestica Borkh.): an assessment of factors affecting gene transfer efficiency during early transformation steps. Plant Cell Reports 15:549−554

doi: 10.1007/BF00232992
[29]

Meng D, Yang Q, Dong B, Song Z, Niu L, et al. 2019. Development of an efficient root transgenic system for pigeon pea and its application to other important economically plants. Plant Biotechnology Journal 17:1804−13

doi: 10.1111/pbi.13101
[30]

Jiao B, Hao X, Liu Z, Liu M, Wang J, et al. 2022. Engineering CRISPR immune systems conferring GLRaV-3 resistance in grapevine. Horticulture Research 9:uhab023

doi: 10.1093/hr/uhab023
[31]

Zhang Z, Sun A, Cong Y, Sheng B, Yao Q, et al. 2006. Agrobacterium-mediated transformation of the apple rootstock Malus micromalus Makino with the RolC gene. In Vitro Cellular & Developmental Biology - Plant 42:491−97

doi: 10.1079/IVP2006812
[32]

Ivanchenko MG, Napsucialy-Mendivil S, Dubrovsky JG. 2010. Auxin-induced inhibition of lateral root initiation contributes to root system shaping in Arabidopsis thaliana. The Plant Journal 64:740−52

doi: 10.1111/j.1365-313X.2010.04365.x
[33]

Wang Y, Dang R, Li J, Han Y, Ding N, et al. 2015. Drought tolerance evaluation of tobacco plants transformed with different set of genes under laboratory and field conditions. Science Bulletin 60:616−28

doi: 10.1007/s11434-015-0748-5
[34]

Chen Q, Dai X, De-Paoli H, Cheng Y, Takebayashi Y, et al. 2014. Auxin overproduction in shoots cannot rescue auxin deficiencies in Arabidopsis roots. Plant and Cell Physiology 55:1072−79

doi: 10.1093/pcp/pcu039
[35]

Ko D, Kang J, Kiba T, Park J, Kojima M, et al. 2014. Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proceedings of the National Academy of Sciences of the United States of America 111:7150−55

doi: 10.1073/pnas.1321519111