[1]

Daniell H, Jin S, Zhu XG, Gitzendanner MA, Soltis DE, et al. 2021. Green giant—a tiny chloroplast genome with mighty power to produce high-value proteins: history and phylogeny. Plant Biotechnology Journal 19:430−47

doi: 10.1111/pbi.13556
[2]

Hajdukiewicz PTJ, Allison LA, Maliga P. 1997. The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. The EMBO Journal 16:4041−48

doi: 10.1093/emboj/16.13.4041
[3]

De Santis-MacIossek G, Kofer W, Bock A, Schoch S, Maier RM, et al. 1999. Targeted disruption of the plastid RNA polymerase genes rpoA, B and C1: molecular biology, biochemistry and ultrastructure. The Plant Journal 18:477−89

doi: 10.1046/j.1365-313X.1999.00473.x
[4]

Qin G, Gu H, Ma L, Peng Y, Deng XW, et al. 2007. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Research 17:471−82

doi: 10.1038/cr.2007.40
[5]

Jiang D, Tang R, Shi Y, Ke X, Wang Y, et al. 2020. Arabidopsis seedling lethal 1 interacting with plastid-encoded RNA polymerase complex proteins is essential for chloroplast development. Frontiers in Plant Science 11:602782

doi: 10.3389/fpls.2020.602782
[6]

Lv J, Shang L, Chen Y, Han Y, Yang X, et al. 2020. OsSLC1 encodes a pentatricopeptide repeat protein essential for early chloroplast development and seedling survival. Rice 13:25

doi: 10.1186/s12284-020-00385-5
[7]

Lin DZ, Pan QW, Wang XM, Chen Y, Pan XB, et al. 2022. Mutation of the rice AN1-type zinc-finger protein gene ASL4 causes chloroplast development defects and seedling lethality. Plant Biology 24:95−103

doi: 10.1111/plb.13334
[8]

Qiao J, Ma C, Wimmelbacher M, Börnke F, Luo M. 2011. Two novel proteins, MRL7 and its paralog MRL7-L, have essential but functionally distinct roles in chloroplast development and are involved in plastid gene expression regulation in Arabidopsis. Plant and Cell Physiology 52:1017−30

doi: 10.1093/pcp/pcr054
[9]

Powikrowska M, Khrouchtchova A, Martens HJ, Zygadlo-Nielsen A, Melonek J, et al. 2014. SVR4 (suppressor of variegation 4) and SVR4-like: two proteins with a role in proper organization of the chloroplast genetic machinery. Physiologia Plantarum 150:477−92

doi: 10.1111/ppl.12108
[10]

Yua QB, Ma Q, Kong MM, Zhao TT, Zhang XL, et al. 2014. AtECB1/MRL7, a thioredoxin-like fold protein with disulfide reductase activity, regulates chloroplast gene expression and chloroplast biogenesis in Arabidopsis thaliana. Molecular Plant 7:206−17

doi: 10.1093/mp/sst092
[11]

Qiu Y, Pasoreck EK, Yoo CY, He J, Wang H, et al. 2021. RCB initiates Arabidopsis thermomorphogenesis by stabilizing the thermoregulator PIF4 in the daytime. Nature Communication 12:2042

doi: 10.1038/s41467-021-22313-x
[12]

Yoo CY, Pasoreck EK, Wang H, Cao J, Blaha GM, et al. 2019. Phytochrome activates the plastid-encoded RNA polymerase for chloroplast biogenesis via nucleus-to-plastid signaling. Nature Communications 10:2629

doi: 10.1038/s41467-019-10518-0
[13]

Qiao J, Li J, Chu W, Luo M. 2013. PRDA1, a novel chloroplast nucleoid protein, is required for early chloroplast development and is involved in the regulation of plastid gene expression in Arabidopsis. Plant and Cell Physiology 54:2071−84

doi: 10.1093/pcp/pct148
[14]

Zhao C, Liu L, Safdar LB, Xie M, Cheng X, et al. 2020. Characterization and fine mapping of a yellow-virescent gene regulating chlorophyll biosynthesis and early stage chloroplast development in Brassica napus. G3 Genes|Genomes|Genetics 10:3201−11

doi: 10.1534/g3.120.401460
[15]

Xu K, Wu Y, Song J, Hu K, Wu Z, et al. 2021. Fine mapping and identification of BnaC0.6 FtsH1, a lethal gene that regulates the PSII repair cycle in Brassica napus. International Journal of Molecular Sciences 22:2087

doi: 10.3390/ijms22042087
[16]

Zhang H, Zhang W, Xiang F, Zhang Z, Guo Y, et al. 2023. Photosynthetic characteristics and genetic mapping of a new yellow leaf mutant crm1 in Brassica napus. Molecular Breeding 43:80

doi: 10.1007/s11032-023-01429-6
[17]

Wang ZW, Zhang TQ, Xing YD, Zeng XQ, Wang L, et al. 2016. YGL9, encoding the putative chloroplast signal recognition particle 43 kDa protein in rice, is involved in chloroplast development. Journal of Integrative Agriculture 15:944−53

doi: 10.1016/S2095-3119(15)61310-7
[18]

Lindahl M, Spetea C, Hundal T, Oppenheim AB, Adam Z, et al. 2000. The thylakoid FtsH protease plays a role in the light-induced turnover of the photosystem II D1 protein. The Plant Cell 12:419−31

doi: 10.1105/tpc.12.3.419
[19]

Yi B, Zeng F, Lei S, Chen Y, Yao X, et al. 2010. Two duplicate CYP704B1-homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus. The Plant Journal 63:925−38

doi: 10.1111/j.1365-313X.2010.04289.x
[20]

Belser C, Istace B, Denis E, Dubarry M, Baurens FC, et al. 2018. Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nature Plants 4:879−87

doi: 10.1038/s41477-018-0289-4
[21]

Chen H, Wang T, He X, Cai X, Lin R, et al. 2022. BRAD V3.0: an upgraded Brassicaceae database. Nucleic Acids Research 50:D1432−D1441

doi: 10.1093/nar/gkab1057
[22]

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, et al. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research 20:1297−303

doi: 10.1101/gr.107524.110
[23]

Han F, Yuan K, Kong C, Zhang X, Yang L, et al. 2018. Fine mapping and candidate gene identification of the genic male-sterile gene ms3 in cabbage 51S. Theoretical and Applied Genetics 131:2651−61

doi: 10.1007/s00122-018-3180-9
[24]

Liu J, Cui J, Dong J, Zhong J, Zhong C, et al. 2024. A 1-bp deletion in the MC04g1399 is highly associated with failure to produce fruit wart in bitter gourd. Horticultural Plant Journal 10:171−80

doi: 10.1016/j.hpj.2022.12.017
[25]

Han F, Yang C, Fang Z, Yang L, Zhuang M, et al. 2015. Inheritance and InDel markers closely linked to petal color gene (cpc-1) in Brassica oleracea. Molecular Breeding 35:160

doi: 10.1007/s11032-015-0354-x
[26]

Gao Y, Li N, Li X, Lu Y, Feng D, et al. 2022. Genome-wide development and utilization of Simple Sequence Repeats in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Vegetable Research 2:9

doi: 10.48130/VR-2022-0009
[27]

Yi D, Cui L, Wang L, Liu Y, Zhuang M, et al. 2013. Pyramiding of Bt cry1Ia8 and cry1Ba3 genes into cabbage (Brassica oleracea L. var. capitata) confers effective control against diamondback moth. Plant Cell, Tissue and Organ Culture 115:419−28

doi: 10.1007/s11240-013-0373-4
[28]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−08

doi: 10.1006/meth.2001.1262
[29]

Cackett L, Luginbuehl LH, Schreier TB, Lopez-Juez E, Hibberd JM. 2022. Chloroplast development in green plant tissues: the interplay between light, hormone, and transcriptional regulation. New Phytologist 233:2000−16

doi: 10.1111/nph.17839
[30]

Huang X, Zhang X, Yang S. 2009. A novel chloroplast-localized protein EMB1303 is required for chloroplast development in Arabidopsis. Cell Research 19:1205−16

doi: 10.1038/cr.2009.84
[31]

Chen S, Zeng X, Li Y, Qiu S, Peng X, et al. 2022. The nuclear-encoded plastid ribosomal protein L18s are essential for plant development. Frontiers in Plant Science 13:949897

doi: 10.3389/fpls.2022.949897
[32]

Zhao Y, Huang S, Wang N, Zhang Y, Ren J, et al. 2022. Identification of a biomass unaffected pale green mutant gene in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Scientific Reports 12:7731

doi: 10.1038/s41598-022-11825-1
[33]

Zhang B, Wu Y, Li S, Ren W, Yang L, et al. 2024. Chloroplast C-to-U editing, regulated by a PPR protein BoYgl-2, is important for chlorophyll biosynthesis in cabbage. Horticulture Research 11:uhae006

doi: 10.1093/hr/uhae006
[34]

Wang N, Zhang Y, Huang S, Liu Z, Li C, et al. 2020. Defect in Brnym1, a magnesium-dechelatase protein, causes a stay-green phenotype in an EMS-mutagenized Chinese cabbage (Brassica campestris L. ssp. pekinensis) line. Horticulture Research 7:8

doi: 10.1038/s41438-019-0223-6
[35]

Shan Q, Wang Y, Li J, Zhang Y, Chen K, et al. 2013. Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology 31:686−88

doi: 10.1038/nbt.2650
[36]

Pan C, Ye L, Qin L, Liu X, He Y, et al. 2016. CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Scientific Reports 6:24765

doi: 10.1038/srep24765
[37]

Ma C, Zhu C, Zheng M, Liu M, Zhang D, et al. 2019. CRISPR/Cas9-mediated multiple gene editing in Brassica oleracea var. capitata using the endogenous tRNA-processing system. Horticulture Research 6:20

doi: 10.1038/s41438-018-0107-1
[38]

Myouga F, Hosoda C, Umezawa T, Iizumi H, Kuromori T, et al. 2008. A heterocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in Arabidopsis. The Plant Cell 20:3148−62

doi: 10.1105/tpc.108.061341
[39]

Arsova B, Hoja U, Wimmelbacher M, Greiner E, Ustün Ş, et al. 2010. Plastidial thioredoxin z interacts with two fructokinase-like proteins in a thiol-dependent manner: evidence for an essential role in chloroplast development in Arabidopsis and Nicotiana benthamiana. The Plant Cell 22:1498−515

doi: 10.1105/tpc.109.071001
[40]

Steiner S, Schröter Y, Pfalz J, Pfannschmidt T. 2011. Identification of essential subunits in the plastid-encoded RNA polymerase complex reveals building blocks for proper plastid development. Plant Physiology 157:1043−55

doi: 10.1104/pp.111.184515
[41]

Favier A, Gans P, Boeri Erba E, Signor L, Muthukumar SS, et al. 2021. The plastid-encoded RNA polymerase-associated protein PAP9 is a superoxide dismutase with unusual structural features. Frontiers in Plant Science 12:668897

doi: 10.3389/fpls.2021.668897
[42]

Gallie DR, Chen Z. 2019. Chloroplast-localized iron superoxide dismutases FSD2 and FSD3 are functionally distinct in Arabidopsis. PLoS One 14:e0220078

doi: 10.1371/journal.pone.0220078
[43]

He L, Zhang S, Qiu Z, Zhao J, Nie W, et al. 2018. FRUCTOKINASE-LIKE PROTEIN 1 interacts with TRXz to regulate chloroplast development in rice. Journal of Integrative Plant Biology 60:94−111

doi: 10.1111/jipb.12631