| [1] |
Gupta A, Bano A, Rai S, Mishra R, Singh M, et al. 2022. Mechanistic insights of plant-microbe interaction towards drought and salinity stress in plants for enhancing the agriculture productivity. Plant Stress 4:100073 doi: 10.1016/j.stress.2022.100073 |
| [2] |
Gupta A, Bano A, Rai S, Kumar M, Ali J, et al. 2021. ACC deaminase producing plant growth promoting rhizobacteria enhance salinity stress tolerance in Pisum sativum. 3 Biotech 11:514 doi: 10.1007/s13205-021-03047-5 |
| [3] |
Cheng M, Wang H, Fan J, Wang X, Sun X, et al. 2021. Crop yield and water productivity under salty water irrigation: a global meta-analysis. Agricultural Water Management 256:107105 doi: 10.1016/j.agwat.2021.107105 |
| [4] |
Ahanger MA, Agarwal RM. 2017. Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L) as influenced by potassium supplementation. Plant Physiology and Biochemistry 115:449−60 doi: 10.1016/j.plaphy.2017.04.017 |
| [5] |
Mokrani S, Nabti EH, Cruz C. 2020. Current advances in plant growth promoting bacteria alleviating salt stress for sustainable agriculture. Applied Sciences 10:7025 doi: 10.3390/app10207025 |
| [6] |
Gupta A, Vandana P. 2019. Effect of PGPR isolates on plant growth promotion in relation to salinity stress. Bulletin of Environment, Pharmacology and Life Science 8:18−26 |
| [7] |
Morton MJL, Awlia M, Al-Tamimi N, Saade S, Pailles Y, et al. 2019. Salt stress under the scalpel – dissecting the genetics of salt tolerance. The Plant Journal 97:148−63 doi: 10.1111/tpj.14189 |
| [8] |
Gupta A, Singh K, Charles M, Pathak N. 2022. Role of ACC deaminase producing plant growth promoting rhizobacteria in ameliorating the salinity stress conditions: a review. Era's Journal of Medical Research 9:60−77 doi: 10.24041/ejmr2022.09 |
| [9] |
Riyazuddin R, Verma R, Singh K, Nisha N, Keisham M, et al. 2020. Ethylene: a master regulator of salinity stress tolerance in plants. Biomolecules 10:959 doi: 10.3390/biom10060959 |
| [10] |
Gupta A, Mishra R, Rai S, Bano A, Pathak N, et al. 2022. Mechanistic insights of plant growth promoting bacteria mediated drought and salt stress tolerance in plants for sustainable agriculture. International Journal of Molecular Sciences 23:3741 doi: 10.3390/ijms23073741 |
| [11] |
Kumar M, Giri VP, Pandey S, Gupta A, Patel MK, et al. 2021. Plant-growth-promoting rhizobacteria emerging as an effective bioinoculant to improve the growth, production, and stress tolerance of vegetable crops. International Journal of Molecular Sciences 22:12245 doi: 10.3390/ijms222212245 |
| [12] |
Bano A, Gupta A, Rai S, Fatima T, Sharma S, et al. 2021. Mechanistic role of reactive oxygen species and its regulation via the antioxidant system under environmental stress. In Plant Stress Physiology - Perspectives in Agriculture, eds Mirza Hasanuzzaman M, Nahar K. UK: IntechOpen. pp. 1−18. doi: 10.5772/intechopen.101045 |
| [13] |
Kumar M, Mishra S, Dixit V, Kumar M, Agarwal L, et al. 2016. Synergistic effect of Pseudomonas putida and Bacillus amyloliquefaciens ameliorates drought stress in chickpea (Cicer arietinum L.). Plant Signaling & Behavior 11:e1071004 doi: 10.1080/15592324.2015.1071004 |
| [14] |
Fatima T, Gupta A, Prakash O, Sharma S, Singh PC. 2022. Biochemical and anatomical modifications as early indicators of drought tolerance and sensitivity in rice varieties. Biochemical & Cellular Archives 22:1107−16 |
| [15] |
Miyake C. 2010. Alternative electron flows (water–water cycle and cyclic electron flow around PSI) in photosynthesis: molecular mechanisms and physiological functions. Plant and Cell Physiology 51:1951−63 doi: 10.1093/pcp/pcq173 |
| [16] |
Gupta A, Rai S, Bano A, Khanam A, Sharma S, et al. 2021. Comparative evaluation of different salt-tolerant plant growth-promoting bacterial isolates in mitigating the induced adverse effect of salinity in Pisum sativum. Biointerface Research Applied Chemistry 11:13141−54 doi: 10.33263/BRIAC115.1314113154 |
| [17] |
Mishra J, Prakash J, Arora NK. 2016. Role of beneficial soil microbes in sustainable agriculture and environmental management. Climate Change and Environmental Sustainability 4:137−49 doi: 10.5958/2320-642X.2016.00015.6 |
| [18] |
Kumar P, Sharma PK. 2020. Soil salinity and food security in India. Frontiers in Sustainable Food Systems 4:533781 doi: 10.3389/fsufs.2020.533781 |
| [19] |
Bessaim MM, Missoum H, Bendani K, Laredj N, Bekkouche MS. 2020. Effect of processing time on removal of harmful emerging salt pollutants from saline-sodic soil during electrochemical remediation. Chemosphere 253:126688 doi: 10.1016/j.chemosphere.2020.126688 |
| [20] |
Ayyam V, Palanivel S, Chandrakasan S. 2019. Approaches in land degradation management for productivity enhancement. In Coastal Ecosystems of the Tropics - Adaptive Management. Singapor: Springer. pp. 463–91. doi: 10.1007/978-981-13-8926-9_20 |
| [21] |
Minato EA, Brignoli FM, Neto ME, Besen MR, Cassim BMAR, et al. 2023. Lime and gypsum application to low-acidity soils: changes in soil chemical properties, residual lime content and crop agronomic performance. Soil and Tillage Research 234:105860 doi: 10.1016/j.still.2023.105860 |
| [22] |
Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A. 2016. Role of plant growth promoting rhizobacteria in agricultural sustainability—a review. Molecules 21:573 doi: 10.3390/molecules21050573 |
| [23] |
Glick BR. 2012. Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401 |
| [24] |
Tripathi A, Pandey VK, Jain D, Singh G, Brar NS, et al. 2024. An updated review on significance of PGPR-induced plant signalling and stress management in advancing sustainable agriculture. Journal of Agriculture and Food Research 16:101169 doi: 10.1016/j.jafr.2024.101169 |
| [25] |
El Ghobashy H, Shaban Y, Okasha M, Abd El-Reheem S, Abdelgawad M, et al. 2023. Development and evaluation of a dual-purpose machine for chopping and crushing forage crops. Heliyon 9:e15460 doi: 10.1016/j.heliyon.2023.e15460 |
| [26] |
Okasha M, Hegazy R, Kamel RM. 2023. Assessment of raisins byproducts for environmentally sustainable use and value addition. AgriEngineering 5:1469−80 doi: 10.3390/agriengineering5030091 |
| [27] |
Mohanty SS. 2021. Biofertilizers: a sustainable approach towards enhancing the agricultural productivity. In Biomolecular Engineering Solutions for Renewable Specialty Chemicals: Microorganisms, Products, and Processes, eds Krishnaraj RN, Sani RK. Amsterdam: John Wiley & Sons, Inc. pp. 387−418. doi: 10.1002/9781119771951.ch12 |
| [28] |
Kumawat KC, Nagpal S, Sharma P. 2022. Potential of plant growth-promoting rhizobacteria-plant interactions in mitigating salt stress for sustainable agriculture: a review. Pedosphere 32:223−45 doi: 10.1016/S1002-0160(21)60070-X |
| [29] |
Kumawat KC, Sharma B, Nagpal S, Kumar A, Tiwari S, et al. 2022. Plant growth-promoting rhizobacteria: salt stress alleviators to improve crop productivity for sustainable agriculture development. Frontiers in Plant Science 13:1101862 doi: 10.3389/fpls.2022.1101862 |
| [30] |
Chaudhry S, Sidhu GPS. 2022. Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. Plant Cell Reports 41:1−31 doi: 10.1007/s00299-021-02759-5 |
| [31] |
Minhas PS, Rane J, Pasala RK. 2017. Abiotic stresses in agriculture: an overview. In Abiotic Stress Management for Resilient Agriculture, eds Minhas P, Rane J, Pasala R. Singapore: Springer. pp. 3–8. doi: 10.1007/978-981-10-5744-1_1 |
| [32] |
Food and Agriculture Organization of the United Nations (FAO). 2015. Status of the world's soil resources (SWSR): main report. Technical Summary, FAO, Italy. 650 pp. https://openknowledge.fao.org/server/api/core/bitstreams/6ec24d75-19bd-4f1f-b1c5-5becf50d0871/content |
| [33] |
Rezvi HUA, Tahjib-Ul-Arif M, Azim MA, Tumpa TA, Tipu MMH, et al. 2023. Rice and food security: climate change implications and the future prospects for nutritional security. Food and Energy Security 12:e430 doi: 10.1002/fes3.430 |
| [34] |
Szabo S, Hossain MS, Adger WN, Matthews Z, Ahmed S, et al. 2016. Soil salinity, household wealth and food insecurity in tropical deltas: evidence from south-west coast of Bangladesh. Sustainability Science 11:411−21 doi: 10.1007/s11625-015-0337-1 |
| [35] |
Alsamadany H, Alharby HF, Al-Zahrani HS, Kuşvuran A, Kuşvuran S, et al. 2023. Selenium fortification stimulates antioxidant- and enzyme gene expression-related defense mechanisms in response to saline stress in Cucurbita pepo. Scientia Horticulturae 312:111886 doi: 10.1016/j.scienta.2023.111886 |
| [36] |
Shahid MA, Sarkhosh A, Khan N, Balal RM, Ali S, et al. 2020. Insights into the physiological and biochemical impacts of salt stress on plant growth and development. Agronomy 10:938 doi: 10.3390/agronomy10070938 |
| [37] |
Ashraf M, Munns R. 2022. Evolution of approaches to increase the salt tolerance of crops. Critical Reviews in Plant Sciences 41:128−60 doi: 10.1080/07352689.2022.2065136 |
| [38] |
Farooq M, Hussain M, Ul-Allah S, Siddique KHM. 2019. Physiological and agronomic approaches for improving water-use efficiency in crop plants. Agricultural Water Management 219:95−108 doi: 10.1016/j.agwat.2019.04.010 |
| [39] |
Sarma B, Gogoi L, Gogoi N, Kataki R. 2022. Crop plants under metal stress and its remediation. In Plant Stress: Challenges and Management in the New Decade, eds Roy S, Mathur P, Chakraborty AP, Saha SP. Cham: Springer. pp. 57–71. doi: 10.1007/978-3-030-95365-2_3 |
| [40] |
Jiang Y, Hou L, Ding F, Whalen JK. 2023. Root mucilage: chemistry and functions in soil. Encyclopedia of Soils in the Environment (Second Edition) 1:332−42 doi: 10.1016/B978-0-12-822974-3.00171-3 |
| [41] |
Spiekerman JJ, Devos KM. 2020. The halophyte seashore paspalum uses adaxial leaf papillae for sodium sequestration. Plant Physiology 184:2107−19 doi: 10.1104/pp.20.00796 |
| [42] |
Riedelsberger J, Blatt MR. 2017. Roots—the hidden provider. Frontiers in Plant Science 8:1021 doi: 10.3389/fpls.2017.01021 |
| [43] |
Suralta RR, Kano-Nakata M, Niones JM, Inukai Y, Kameoka E, et al. 2018. Root plasticity for maintenance of productivity under abiotic stressed soil environments in rice: progress and prospects. Field Crops Research 220:57−66 doi: 10.1016/j.fcr.2016.06.023 |
| [44] |
Kloepper JW. 1996. Host specificity in microbe-microbe interactions: biological control agents vary in specificity for hosts, pathogen control, ecological habitat, and environmental conditions. BioScience 46:406−09 doi: 10.2307/1312874 |
| [45] |
Gupta A, Rai S, Bano A, Sharma S, Kumar M, et al. 2022. ACC deaminase produced by PGPR mitigates the adverse effect of osmotic and salinity stresses in Pisum sativum through modulating the antioxidants activities. Plants 11:3419 doi: 10.3390/plants11243419 |
| [46] |
Peng J, Ma J, Wei X, Zhang C, Jia N, et al. 2021. Accumulation of beneficial bacteria in the rhizosphere of maize (Zea mays L.) grown in a saline soil in responding to a consortium of plant growth promoting rhizobacteria. Annals of Microbiology 71:40 doi: 10.1186/s13213-021-01650-8 |
| [47] |
Kumar A, Verma JP. 2018. Does plant—microbe interaction confer stress tolerance in plants: a review? Microbiological Research 207:41−52 doi: 10.1016/j.micres.2017.11.004 |
| [48] |
Dong H, Wang Y, Di Y, Qiu Y, Ji Z, et al. 2024. Plant growth-promoting rhizobacteria Pseudomonas aeruginosa HG28-5 improves salt tolerance by regulating Na+/K+ homeostasis and ABA signaling pathway in tomato. Microbiological Research 283:127707 doi: 10.1016/j.micres.2024.127707 |
| [49] |
Hyder S, Gondal AS, Riaz N, Rashid M, Qaiser Z, et al. 2024. Plant growth promoting rhizobacteria (PGPR): a green approach to manage soil-borne fungal pathogens and plant growth promotion. In Microbial Technology for Agro-Ecosystems, eds Kumar V, Iram S. Amsterdam: Elsevier. pp. 153−76. doi: 10.1016/B978-0-443-18446-8.00014-0 |
| [50] |
Kushwaha M, Mishra A, Shankar S, Goel D, Joshi S, et al. 2024. Plant growth-promoting rhizobacteria for sustainable agriculture: recent progress and challenges. In Role of Green Chemistry in Ecosystem Restoration to Achieve Environmental Sustainability, Srivastav AL, Grewal AS, Markandeya, Pham TD. Amsterdam: Elsevier. pp. 333−42. doi: 10.1016/B978-0-443-15291-7.00016-X |
| [51] |
Bhattacharyya PN, Jha DK. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology 28:1327−50 doi: 10.1007/s11274-011-0979-9 |
| [52] |
Gupta S, Seth R, Sharma A. 2016. Plant growth-promoting rhizobacteria play a role as phytostimulators for sustainable agriculture. In Microbe Interaction: An Approach to Sustainable Agriculture, eds Choudhary D, Varma A, Tuteja N. Singapore: Springer. pp. 475–93. doi: 10.1007/978-981-10-2854-0_22 |
| [53] |
Santangeli M, Steininger-Mairinger T, Vetterlein D, Hann S, Oburger E. 2024. Maize (Zea mays L.) root exudation profiles change in quality and quantity during plant development – a field study. Plant Science 338:111896 doi: 10.1016/j.plantsci.2023.111896 |
| [54] |
Hasanuzzaman M, Sinthi F, Alam S, Sultana A, Rummana S, et al. 2024. Perspective chapter: enhancing plant resilience to salinity induced oxidative stress - role of exogenous elicitors. In Abiotic Stress in Crop Plants - Ecophysiological Responses and Molecular Approaches, eds Hasanuzzaman M, Nahar K. UK: IntechOpen. pp. 1−22. doi: 10.5772/intechopen.115035 |
| [55] |
Chele KH, Tinte MM, Piater LA, Dubery IA, Tugizimana F. 2021. Soil salinity, a serious environmental issue and plant responses: a metabolomics perspective. Metabolites 11:724 doi: 10.3390/metabo11110724 |
| [56] |
Rodríguez Coca LI, García González MT, Gil Unday Z, Jiménez Hernández J, Rodríguez Jáuregui MM, et al. 2023. Effects of sodium salinity on rice (Oryza sativa L.) cultivation: a review. Sustainability 15:1804 doi: 10.3390/su15031804 |
| [57] |
Nakbanpote W, Panitlurtumpai N, Sangdee A, Sakulpone N, Sirisom P, et al. 2014. Salt-tolerant and plant growth-promoting bacteria isolated from Zn/Cd contaminated soil: identification and effect on rice under saline conditions. Journal of Plant Interactions 9:379−87 doi: 10.1080/17429145.2013.842000 |
| [58] |
Ghosh D, Gupta A, Mohapatra S. 2019. A comparative analysis of exopolysaccharide and phytohormone secretions by four drought-tolerant rhizobacterial strains and their impact on osmotic-stress mitigation in Arabidopsis thaliana. World Journal of Microbiology and Biotechnology 35:90 doi: 10.1007/s11274-019-2659-0 |
| [59] |
Lugtenberg BJJ, Malfanova N, Kamilova F, Berg G. 2013. Plant growth promotion by microbes. In Molecular Microbial Ecology of the Rhizosphere, ed. de Bruijn FJ. US: John Wiley & Sons, Ltd. pp. 559−73. doi: 10.1002/9781118297674.ch53 |
| [60] |
Han HS, Lee KD. 2005. Physiological responses of soybean-inoculation of Bradyrhizobium japonicum with PGPR in saline soil conditions. Research Journal of Agriculture and Biological Sciences 1:216−21 |
| [61] |
Wu Z, Yao L, Kaleem I, Li C. 2012. Application efficacy of biological seed coating agent from combination of PGPR on cotton in the field. Information Technology and Agricultural Engineering, eds Zhu E, Sambath S. Berlin, Heidelberg: Springer. pp. 903–10. doi: 10.1007/978-3-642-27537-1_107 |
| [62] |
Patel D, Jha CK, Tank N, Saraf M. 2012. Growth enhancement of chickpea in saline soils using plant growth-promoting rhizobacteria. Journal of Plant Growth Regulation 31:53−62 doi: 10.1007/s00344-011-9219-7 |
| [63] |
Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, Obando M, Rivera D, et al. 2012. Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Applied Soil Ecology 61:264−72 doi: 10.1016/j.apsoil.2012.01.006 |
| [64] |
Ahmad M, Zahir ZA, Khalid M, Nazli F, Arshad M. 2013. Efficacy of Rhizobium and Pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer's fields. Plant Physiology and Biochemistry 63:170−76 doi: 10.1016/j.plaphy.2012.11.024 |
| [65] |
Gupta PJ, Trivedi MJ, and Soni HP. 2022. Enterobacter cloacae PNE2 as promising plant growth promoting bacterium, isolated from The Kadi Vegetable Market Waste, Gujarat. Biosciences Biotechnology Research Asia 19:773−86 doi: 10.13005/bbra/3030 |
| [66] |
Tewari S, Arora NK. 2014. Multifunctional exopolysaccharides from Pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under saline conditions. Current Microbiology 69:484−94 doi: 10.1007/s00284-014-0612-x |
| [67] |
Sharma S, Kulkarni J, Jha B. 2016. Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut. Frontiers in Microbiology 7:1600 doi: 10.3389/fmicb.2016.01600 |
| [68] |
Tiwari S, Prasad V, Chauhan PS, and Lata C. 2017. Bacillus amyloliquefaciens confers tolerance to various abiotic stresses and modulates plant response to phytohormones through osmoprotection and gene expression regulation in rice. Frontiers in Plant Science 8:1510 doi: 10.3389/fpls.2017.01510 |
| [69] |
Saghafi D, Ghorbanpour M, and Lajayer BA. 2018. Efficiency of Rhizobium strains as plant growth promoting rhizobacteria on morpho-physiological properties of Brassica napus L. under salinity stress. Journal of Soil Science and Plant Nutrition 18:253−68 doi: 10.4067/S0718-95162018005000903 |
| [70] |
Rima FS, Biswas S, Sarker PK, Islam MR, Seraj ZI. 2018. Bacteria endemic to saline coastal belt and their ability to mitigate the effects of salt stress on rice growth and yields. Annals of Microbiology 68:525−35 doi: 10.1007/s13213-018-1358-7 |
| [71] |
Vaishnav A, Kumar R, Singh HB, Sarma BK. 2022. Extending the benefits of PGPR to bioremediation of nitrile pollution in crop lands for enhancing crop productivity. Science of The Total Environment 826:154170 doi: 10.1016/j.scitotenv.2022.154170 |
| [72] |
Safdarian M, Askari H, Vahid Shariati J, Nematzadeh G. 2019. Transcriptional responses of wheat roots inoculated with Arthrobacter nitroguajacolicus to salt stress. Scientific Reports 9:1792 doi: 10.1038/s41598-018-38398-2 |
| [73] |
Gupta A, Bano A, Rai S, Sharma S, Pathak N. 2022. Selection of carrier materials to formulate bioinoculant package for promoting seed germination. Letters in Applied NanoBioScience 12:65 doi: 10.33263/LIANBS123.065 |
| [74] |
Pallavi, Mishra RK, Sahu PK, Mishra V, Jamal H, et al. 2023. Isolation and characterization of halotolerant plant growth promoting rhizobacteria from mangrove region of Sundarbans, India for enhanced crop productivity. Frontiers in Plant Science 14:1122347 doi: 10.3389/fpls.2023.1122347 |
| [75] |
Reshma TS, Dileep C. 2024. Interactive effects on ACC deaminase activity in salt-tolerant plant growth-promoting rhizobacteria and impacts on rice crop improvement. Journal of Agronomy and Crop Science 210:e12688 doi: 10.1111/jac.12688 |
| [76] |
Chen E, Yang C, Tao W, Li S. 2024. Polysaccharides produced by plant growth-promoting rhizobacteria strain Burkholderia sp. BK01 enhance salt stress tolerance to Arabidopsis thaliana. Polymers 16:145 doi: 10.3390/polym16010145 |
| [77] |
Riddech N, Ma YN, Yodpet B. 2024. Enhancing growth of roselle plants (Hibiscus sabdariffa L.) using a salt- and drought-tolerant rhizobacteria-soybean biofertilizer. International Journal of Environmental Research 18:26 doi: 10.1007/s41742-024-00579-5 |
| [78] |
Niu X, Song L, Xiao Y, Ge W. 2017. Drought-tolerant plant growth-promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Frontiers in Microbiology 8:2580 doi: 10.3389/fmicb.2017.02580 |
| [79] |
Sarkar A, Ghosh PK, Pramanik K, Mitra S, Soren T, et al. 2018. A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Research in Microbiology 169:20−32 doi: 10.1016/j.resmic.2017.08.005 |
| [80] |
Saharan BS, Brar B, Duhan JS, Kumar R, Marwaha S, et al. 2022. Molecular and physiological mechanisms to mitigate abiotic stress conditions in plants. Life 12:1634 doi: 10.3390/life12101634 |
| [81] |
Rajput L, Imran A, Mubeen F, Hafeez FY. 2013. Salt-tolerant PGPR strain Planococcus rifietoensis promotes the growth and yield of wheat (Triticum aestivum L.) cultivated in saline soil. Pakistan Journal of Botany 45:1955−62 |
| [82] |
Zahra ST, Tariq M, Abdullah M, Azeem F, Ashraf MA. 2023. Dominance of Bacillus species in the wheat (Triticum aestivum L.) rhizosphere and their plant growth promoting potential under salt stress conditions. PeerJ 11:e14621 doi: 10.7717/peerj.14621 |
| [83] |
Kothari VV, Kothari RK, Kothari CR, Bhatt VD, Nathani NM, et al. 2013. Genome sequence of salt-tolerant Bacillus safensis strain VK, isolated from saline desert area of Gujarat, India. Genome Announcements 1:e00671-13 doi: 10.1128/genomeA.00671-13 |
| [84] |
Amaresan N, Kumar K, Madhuri K, Usharani GK. 2016. Isolation and characterization of salt tolerant plant growth promoting rhizobacteria from plants grown in tsunami affected regions of Andaman and Nicobar Islands. Geomicrobiology Journal 33:942−47 doi: 10.1080/01490451.2015.1128994 |
| [85] |
Zhang S, Fan C, Wang Y, Xia Y, Xiao W, et al. 2018. Salt-tolerant and plant-growth-promoting bacteria isolated from high-yield paddy soil. Canadian Journal of Microbiology 64:968−78 doi: 10.1139/cjm-2017-0571 |
| [86] |
Yao L, Wu Z, Zheng Y, Kaleem I, Li C. 2010. Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. European Journal of Soil Biology 46:49−54 doi: 10.1016/j.ejsobi.2009.11.002 |
| [87] |
Chen L, Liu Y, Wu G, Veronican Njeri K, Shen Q, et al. 2016. Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiologia Plantarum 158:34−44 doi: 10.1111/ppl.12441 |
| [88] |
Rabhi NEH, Silini A, Cherif-Silini H, Yahiaoui B, Lekired A, et al. 2018. Pseudomonas knackmussii MLR6, a rhizospheric strain isolated from halophyte, enhances salt tolerance in Arabidopsis thaliana. Journal of Applied Microbiology 125:1836−51 doi: 10.1111/jam.14082 |
| [89] |
Raghuwanshi R, Prasad JK. 2018. Perspectives of rhizobacteria with ACC deaminase activity in plant growth under abiotic stress. In Root Biology, vol 52, eds Giri B, Prasad R, Varma A. Cham: Springer. pp. 303–21. doi: 10.1007/978-3-319-75910-4_12 |
| [90] |
Saravanakumar D, Samiyappan R. 2007. ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. Journal of Applied Microbiology 102:1283−92 doi: 10.1111/j.1365-2672.2006.03179.x |
| [91] |
Shahzad SM, Khalid A, Arshad M, Tahir J, Mahmood T. 2010. Improving nodulation, growth and yield of Cicer arietinum L. through bacterial ACC-deaminase induced changes in root architecture. European Journal of Soil Biology 46:342−47 doi: 10.1016/j.ejsobi.2010.05.007 |
| [92] |
Shahid M, Singh UB, Khan MS, Singh P, Kumar R, et al. 2023. Bacterial ACC deaminase: insights into enzymology, biochemistry, genetics, and potential role in amelioration of environmental stress in crop plants. Frontiers in Microbiology 14:1132770 doi: 10.3389/fmicb.2023.1132770 |
| [93] |
Upadhyay SK, Singh JS, Saxena AK, Singh DP. 2012. Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions. Plant Biology 14:605−11 doi: 10.1111/j.1438-8677.2011.00533.x |
| [94] |
Ali B, Hafeez A, Ahmad S, Javed MA, Sumaira, et al. 2022. Bacillus thuringiensis PM25 ameliorates oxidative damage of salinity stress in maize via regulating growth, leaf pigments, antioxidant defense system, and stress responsive gene expression. Frontiers in Plant Science 13:921668 doi: 10.3389/fpls.2022.921668 |
| [95] |
Khan V, Mubashshir M, Umar S, Iqbal N. 2024. Methyl jasmonate and Pseudomonas fluorescens synergistically boost antioxidative defense, secondary metabolites, and osmolyte production to enhance drought resilience in Mustard. Journal of Plant Growth Regulation 00:1−19 doi: 10.1007/s00344-024-11310-1 |
| [96] |
Jha Y, Subramanian R. 2016. Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria. Potassium Solubilizing Microorganisms for Sustainable Agriculture, eds Meena V, Maurya B, Verma J, Meena R. New Delhi: Springer. pp. 149–62. doi: 10.1007/978-81-322-2776-2_11 |
| [97] |
Anand G, Shrivas VL, Dubey S, Bhattacharjee A, Sharma S. 2023. Stress-buster Enterobacter sp. alleviates salinity stress in Cajanus cajan together with impacting its rhizospheric microbiome. South African Journal of Botany 156:202−12 doi: 10.1016/j.sajb.2023.02.040 |
| [98] |
Glick BR. 1995. The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology 41:109−17 doi: 10.1139/m95-015 |
| [99] |
Grover M, Bodhankar S, Sharma A, Sharma P, Singh J, et al. 2021. PGPR mediated alterations in root traits: way toward sustainable crop production. Frontiers in Sustainable Food Systems 4:618230 doi: 10.3389/fsufs.2020.618230 |
| [100] |
Karthik C, Arulselvi PI. 2017. Biotoxic effect of chromium (VI) on plant growth-promoting traits of novel Cellulosimicrobium funkei strain AR8 isolated from Phaseolus vulgaris rhizosphere. Geomicrobiology Journal 34:434−42 doi: 10.1080/01490451.2016.1219429 |
| [101] |
Albacete A, Ghanem ME, Martínez-Andújar C, Acosta M, Sánchez-Bravo J, et al. 2008. Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. Journal of Experimental Botany 59:4119−31 doi: 10.1093/jxb/ern251 |
| [102] |
Motesharezadeh B, Etesami H, Bagheri-Novair S, Amirmokri H. 2017. Fertilizer consumption trend in developing countries vs. developed countries. Environmental Monitoring and Assessment 189:103 doi: 10.1007/s10661-017-5812-y |
| [103] |
Ma Y, Rajkumar M, Zhang C, Freitas H. 2016. Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions. Journal of Hazardous Materials 320:36−44 doi: 10.1016/j.jhazmat.2016.08.009 |
| [104] |
Ahmed A, Tariq A, Habib S. 2020. Interactive biology of auxins and phenolics in plant environment. In Plant Phenolics in Sustainable Agriculture, eds Lone R, Shuab R, Kamili A. Singapore: Springer. pp. 117–33. doi: 10.1007/978-981-15-4890-1_5 |
| [105] |
Sun W, Shahrajabian MH, Soleymani A. 2024. The roles of plant-growth-promoting rhizobacteria (PGPR)-based biostimulants for agricultural production systems. Plants 13:613 doi: 10.3390/plants13050613 |
| [106] |
Ngalimat MS, Hata EM, Zulperi D, Ismail SI, Ismail MR, et al. 2022. Streptomyces-mediated growth enhancement and bacterial panicle blight disease suppression in rice plants under greenhouse conditions. Journal of Biotechnology 359:148−60 doi: 10.1016/j.jbiotec.2022.09.018 |
| [107] |
Kumar V, Fox BG, Takasuka TE. 2023. Consolidated bioprocessing of plant biomass to polyhydroxyalkanoate by co-culture of Streptomyces sp. SirexAA-E and Priestia megaterium. Bioresource Technology 376:128934 doi: 10.1016/j.biortech.2023.128934 |
| [108] |
Tewari S, Arora NK. 2018. Role of salicylic acid from Pseudomonas aeruginosa PF23EPS+ in growth promotion of sunflower in saline soils infested with phytopathogen Macrophomina phaseolina. Environmental Sustainability 1:49−59 doi: 10.1007/s42398-018-0002-6 |
| [109] |
Gómez-Godínez LJ, Fernandez-Valverde SL, Romero JCM, Martínez-Romero E. 2019. Metatranscriptomics and nitrogen fixation from the rhizoplane of maize plantlets inoculated with a group of PGPRs. Systematic and Applied Microbiology 42:517−25 doi: 10.1016/j.syapm.2019.05.003 |
| [110] |
Rohilla P, Yadav JP. 2019. Acute salt stress differentially modulates nitrate reductase expression in contrasting salt responsive rice cultivars. Protoplasma 256:1267−78 doi: 10.1007/s00709-019-01378-y |
| [111] |
Ramesh RD, Selvaraj K, Muthusamy K, Lakshmanan L, Francis SP, et al. Endurance of microbes against nitrogen starvation by altering the biochemical and physiological activities of plants. In Plant-Microbe Interaction - Recent Advances in Molecular and Biochemical Approaches, volume 2, eds Swapnil P, Meena M, Harish, Marwal A, Vijayalakshmi S, et al. Amsterdam: Elsevier. pp. 33−63. doi: 10.1016/B978-0-323-91876-3.00014-2 |
| [112] |
Nonnoi F, Chinnaswamy A, García de la Torre V, Coba de la Peña T, Lucas MM, et al. 2012. Metal tolerance of rhizobial strains isolated from nodules of herbaceous legumes (Medicago spp. and Trifolium spp.) growing in mercury-contaminated soils. Applied Soil Ecology 61:49−59 |
| [113] |
Kamran MA, Eqani SAMAS, Bibi S, Xu R, Amna, et al. 2016. Bioaccumulation of nickel by E. sativa and role of plant growth promoting rhizobacteria (PGPRs) under nickel stress. Ecotoxicology and Environmental Safety 126:256−63 doi: 10.1016/j.ecoenv.2016.01.002 |
| [114] |
Zheng T, Wu T, Hou J, Lin D. 2023. α-Fe2O3 nanomaterials strengthened the growth promoting effect of Pseudomonas aurantiaca strain JD37 on alfalfa via enhancing the nutrient interaction of the plant–rhizobacteria symbiont. Environmental Science: Nano 10:2102−14 doi: 10.1039/D3EN00236E |
| [115] |
Rojas-Solis D, Vences-Guzmán MÁ, Sohlenkamp C, Santoyo G. 2023. Cardiolipin synthesis in Pseudomonas fluorescens UM270 plays a relevant role in stimulating plant growth under salt stress. Microbiological Research 268:127295 doi: 10.1016/j.micres.2022.127295 |
| [116] |
Abdel Hamed Abdel Latef A, Abu Alhmad MF, Kordrostami M, Abo–Baker AB AE, Zakir A. 2020. Inoculation with Azospirillum lipoferum or Azotobacter chroococcum reinforces maize growth by improving physiological activities under saline conditions. Journal of Plant Growth Regulation 39:1293−306 doi: 10.1007/s00344-020-10065-9 |
| [117] |
Raghothama KG. 1999. Phosphate acquisition. Annual Review of Plant Biology 50:665−93 doi: 10.1146/annurev.arplant.50.1.665 |
| [118] |
Lv S, Wang D, Jiang P, Jia W, Li Y. 2021. Variation of PHT families adapts salt cress to phosphate limitation under salinity. Plant, Cell & Environment 44:1549−64 doi: 10.1111/pce.14027 |
| [119] |
Liu X, Jiang X, He X, Zhao W, Cao Y, et al. 2019. Phosphate-solubilizing Pseudomonas sp. strain P34-L promotes wheat growth by colonizing the wheat rhizosphere and improving the wheat root system and soil phosphorus nutritional status. Journal of Plant Growth Regulation 38:1314−24 doi: 10.1007/s00344-019-09935-8 |
| [120] |
Murgese P, Santamaria P, Leoni B, Crecchio C. 2020. Ameliorative effects of PGPB on yield, physiological parameters, and nutrient transporter genes expression in barattiere (Cucumis melo L.). Journal of Soil Science and Plant Nutrition 20:784−93 doi: 10.1007/s42729-019-00165-1 |
| [121] |
Srivastava S, Srivastava S. 2020. Prescience of endogenous regulation in Arabidopsis thaliana by Pseudomonas putida MTCC 5279 under phosphate starved salinity stress condition. Scientific Reports 10:5855 doi: 10.1038/s41598-020-62725-1 |
| [122] |
Rafique M, Sultan T, Ortas I, and Chaudhary HJ. 2017. Enhancement of maize plant growth with inoculation of phosphate-solubilizing bacteria and biochar amendment in soil. Soil Science and Plant Nutrition 63:460−69 doi: 10.1080/00380768.2017.1373599 |
| [123] |
Rodrigues AA, Araújo MVF, Soares RS, de Oliveira BFR, Ribeiro IDA, et al. 2018. Isolation and prospection of diazotrophic rhizobacteria associated with sugarcane under organic management. Anais da Academia Brasileira de Ciências 90:3813−29 doi: 10.1590/0001-3765201820180319 |
| [124] |
Ghadamgahi F, Tarighi S, Taheri P, Saripella GV, Anzalone A, et al. 2022. Plant growth-promoting activity of Pseudomonas aeruginosa FG106 and its ability to act as a biocontrol agent against potato, tomato and taro pathogens. Biology 11:140 doi: 10.3390/biology11010140 |
| [125] |
Lim YL, Yong D, Ee R, Krishnan T, Tee KK, et al. 2015. Complete genome sequence of Serratia fonticola DSM 4576T, a potential plant growth promoting bacterium. Journal of Biotechnology 214:43−44 doi: 10.1016/j.jbiotec.2015.09.005 |
| [126] |
Guerra M, Carrasco-Fernández J, Valdés JH, Panichini M, Castro JF. 2023. Draft genome of Pseudomonas sp. RGM 2987 isolated from Stevia philippiana roots reveals its potential as a plant biostimulant and potentially constitutes a novel species. Electronic Journal of Biotechnology 61:9−13 doi: 10.1016/j.ejbt.2022.10.001 |
| [127] |
Ma S, Sadakiyo M, Luo R, Heima M, Yamauchi M, et al. 2016. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. Journal of Power Sources 301:219−28 doi: 10.1016/j.jpowsour.2015.09.124 |
| [128] |
Sagar A, Sayyed RZ, Ramteke PW, Ramakrishna W, Poczai P, et al. 2022. Synergistic effect of Azotobacter nigricans and nitrogen phosphorus potassium fertilizer on agronomic and Yieldtraits of maize (Zea mays L.). Frontiers in Plant Science 13:952212 doi: 10.3389/fpls.2022.952212 |
| [129] |
Carlos MHJ, Stefani PVY, Janette AM, Melani MSS, Gabriela PO. 2016. Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth-promoting bacteria. Microbiological Research 188–189:53−61 doi: 10.1016/j.micres.2016.05.001 |
| [130] |
Asiloglu R, Shiroishi K, Suzuki K, Turgay OC, Murase J, et al. 2020. Protist-enhanced survival of a plant growth promoting rhizobacteria, Azospirillum sp. B510, and the growth of rice (Oryza sativa L.) plants. Applied Soil Ecology 154:103599 doi: 10.1016/j.apsoil.2020.103599 |
| [131] |
Kaur S, Kalia A, Sharma S. 2024. Bioformulation of Azotobacter and Streptomyces for improved growth and yield of wheat (Triticum aestivum L.): a field study. Journal of Plant Growth Regulation 43:2555−71 doi: 10.1007/s00344-024-11282-2 |
| [132] |
Jabborova DP, Narimanov AA, Enakiev YI, Davranov KD. 2020. Effect of Bacillus subtilis 1 strain on the growth and development of wheat (Triticum aestivum L.) under saline condition. Bulgarian Journal of Agricultural Science 26:744−47 |
| [133] |
Lastochkina O, Ivanov S, Petrova S, Garshina D, Lubyanova A, et al. 2022. Role of endogenous salicylic acid as a hormonal intermediate in the bacterial endophyte Bacillus subtilis-induced protection of wheat genotypes contrasting in drought susceptibility under dehydration. Plants 11:3365 doi: 10.3390/plants11233365 |
| [134] |
Maqsood A, Shahid M, Hussain S, Mahmood F, Azeem F, et al. 2021. Root colonizing Burkholderia sp. AQ12 enhanced rice growth and upregulated tillering-responsive genes in rice. Applied Soil Ecology 157:103769 doi: 10.1016/j.apsoil.2020.103769 |
| [135] |
Sivalingam KM and Batiri A. 2020. Isolation and identification of some cyanobacteria and their plant growth promoting effect on wheat (Triticum aestivum L.), Ethiopia. Journal of Science and Inclusive Development 2:17−37 |
| [136] |
Dal Cortivo C, Ferrari M, Visioli G, Lauro M, Fornasier F, et al. 2020. Effects of seed-applied biofertilizers on rhizosphere biodiversity and growth of common wheat (Triticum aestivum L.) in the field. Frontiers in Plant Science 11:72 doi: 10.3389/fpls.2020.00072 |
| [137] |
El-Shouny WA, Shabanah S, Fray RG, Narraidoo N, El-Ballat EM. 2019. Endophytic colonization of tomato plants by Gluconacetobacter diazotrophicus and its effect on crops improvement and yield promotion. Delta Journal of Science 41:92−106 |
| [138] |
Singh RK, Singh P, Li HB, Song QQ, Guo DJ, et al. 2020. Diversity of nitrogen-fixing rhizobacteria associated with sugarcane: a comprehensive study of plant-microbe interactions for growth enhancement in Saccharum spp. BMC Plant Biology 20:220 doi: 10.1186/s12870-020-02400-9 |
| [139] |
Mattila TJ, Vihanto N. 2024. Agricultural limitations to soil carbon sequestration: plant growth, microbial activity, and carbon stabilization. Agriculture, Ecosystems & Environment 367:108986 doi: 10.1016/j.agee.2024.108986 |
| [140] |
Gong Y, Chen LJ, Pan SY, Li XW, Xu MJ, et al. 2020. Antifungal potential evaluation and alleviation of salt stress in tomato seedlings by a halotolerant plant growth-promoting actinomycete Streptomyces sp. KLBMP5084. Rhizosphere 16:100262 doi: 10.1016/j.rhisph.2020.100262 |
| [141] |
Bomle DV, Kiran A, Kumar JK, Nagaraj LS, Pradeep CK, et al. 2021. Plants saline environment in perception with rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase. International Journal of Molecular Sciences 22:11461 doi: 10.3390/ijms222111461 |
| [142] |
Gray EJ, Smith DL. 2005. Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biology and Biochemistry 37:395−412 doi: 10.1016/j.soilbio.2004.08.030 |
| [143] |
Bhat MA, Kumar V, Bhat MA, Wani IA, Dar FL, et al. 2020. Mechanistic insights of the interaction of plant growth-promoting rhizobacteria (PGPR) with plant roots toward enhancing plant productivity by alleviating salinity stress. Frontiers in Microbiology 11:1952 doi: 10.3389/fmicb.2020.01952 |
| [144] |
Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, et al. 2018. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review. Microbiological Research 209:21−32 doi: 10.1016/j.micres.2018.02.003 |
| [145] |
Jalmi SK, Sinha AK. 2022. Ambiguities of PGPR-induced plant signaling and stress management. Frontiers in Microbiology 13:899563 doi: 10.3389/fmicb.2022.899563 |
| [146] |
Zhao X, Ma F, Feng C, Bai S, Yang J, et al. 2017. Complete genome sequence of Arthrobacter sp. ZXY-2 associated with effective atrazine degradation and salt adaptation. Journal of Biotechnology 248:43−47 doi: 10.1016/j.jbiotec.2017.03.010 |
| [147] |
Stassinos PM, Rossi M, Borromeo I, Capo C, Beninati S, et al. 2022. Amelioration of salt stress tolerance in rapeseed (Brassica napus) cultivars by seed inoculation with Arthrobacter globiformis. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology 156:370−83 doi: 10.1080/11263504.2020.1857872 |
| [148] |
Ji C, Liu Z, Hao L, Song X, Wang C, et al. 2020. Effects of Enterobacter cloacae HG-1 on the nitrogen-fixing community structure of wheat rhizosphere soil and on salt tolerance. Frontiers in Plant Science 11:1094 doi: 10.3389/fpls.2020.01094 |
| [149] |
Niu S, Gao Y, Zi H, Liu Y, Liu X, et al. 2022. The osmolyte-producing endophyte Streptomyces albidoflavus OsiLf-2 induces drought and salt tolerance in rice via a multi-level mechanism. The Crop Journal 10:375−86 doi: 10.1016/j.cj.2021.06.008 |
| [150] |
Kaleh AM, Singh P, Mazumdar P, Wong GR, Chua KO, et al. 2023. A halotolerant plant growth promoting consortium of Bacillus sp. RB3 and Pseudomonas sp. EB3 primes banana, Musa acuminata cv. Berangan, against salinity and Foc-TR4 stresses. Current Plant Biology 35–36:100294 doi: 10.1016/j.cpb.2023.100294 |
| [151] |
Gu YL, Li JZ, Li Y, Cong S, Wang J, et al. 2023. Pseudomonas cyclic lipopeptide medpeptin: biosynthesis and modulation of plant immunity. Engineering 28:153−65 doi: 10.1016/j.eng.2023.05.016 |
| [152] |
Álvarez C, Jiménez-Ríos L, Iniesta-Pallarés M, Jurado-Flores A, Molina-Heredia FP, et al. 2023. Symbiosis between cyanobacteria and plants: from molecular studies to agronomic applications. Journal of Experimental Botany 74(19):6145−57 doi: 10.1093/jxb/erad261 |
| [153] |
Marulanda A, Azcón R, Chaumont F, Ruiz-Lozano JM, Aroca R. 2010. Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232:533−43 doi: 10.1007/s00425-010-1196-8 |
| [154] |
Nautiyal CS, Srivastava S, Chauhan PS, Seem K, Mishra A, et al. 2013. Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiology and Biochemistry 66:1−9 doi: 10.1016/j.plaphy.2013.01.020 |
| [155] |
Yan J, Smith MD, Glick BR, Liang Y. 2014. Effects of ACC deaminase containing rhizobacteria on plant growth and expression of Toc GTPases in tomato (Solanum lycopersicum) under salt stress. Botany 92:775−81 doi: 10.1139/cjb-2014-0038 |
| [156] |
Kim K, Jang YJ, Lee SM, Oh BT, Chae JC, et al. 2014. Alleviation of salt stress by Enterobacter sp. EJ01 in tomato and Arabidopsis is accompanied by up-regulation of conserved salinity responsive factors in plants. Molecules and Cells 37:109−17 doi: 10.14348/molcells.2014.2239 |
| [157] |
Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A. 2016. Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Scientific Reports 6:34768 doi: 10.1038/srep34768 |
| [158] |
Habib SH, Kausar H, Saud HM. 2016. Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. BioMed Research International 2016:6284547 doi: 10.1155/2016/6284547 |
| [159] |
Barnawal D, Bharti N, Pandey SS, Pandey A, Chanotiya CS, et al. 2017. Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiologia Plantarum 161:502−14 doi: 10.1111/ppl.12614 |
| [160] |
Vaishnav A, Choudhary DK. 2019. Regulation of drought-responsive gene expression in Glycine max L. Merrill is mediated through Pseudomonas simiae strain AU. Journal of Plant Growth Regulation 38:333−42 doi: 10.1007/s00344-018-9846-3 |
| [161] |
Rafiq K, Akram MS, Shahid M, Qaisar U, Rashid N. 2020. Enhancement of salt tolerance in maize (Zea mays L.) using locally isolated Bacillus sp. SR-2-1/1. Biologia 75:1425−36 doi: 10.2478/s11756-020-00435-9 |
| [162] |
Agha MS, Haroun SA, Abbas MA, Sofy MR, Mowafy AM. 2023. Growth and metabolic response of Glycine max to the plant growth-promoting Enterobacter delta PSK and Bradyrhizobium japonicum under salinity stress. Journal of Plant Growth Regulation 42:5816−30 doi: 10.1007/s00344-023-10967-4 |
| [163] |
Gámez-Arjona F, Park HJ, García E, Aman R, Villalta I, et al. 2024. Inverse regulation of SOS1 and HKT1 protein localization and stability by SOS3/CBL4 in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 121:e2320657121 doi: 10.1073/pnas.2320657121 |
| [164] |
Giannelli G, Mattarozzi M, Gentili S, Fragni R, Maccari C, et al. 2024. A novel PGPR strain homologous to Beijerinckia fluminensis induces biochemical and molecular changes involved in Arabidopsis thaliana salt tolerance. Plant Physiology and Biochemistry 206:108187 doi: 10.1016/j.plaphy.2023.108187 |
| [165] |
Mousavi SS, Karami A, Saharkhiz MJ, Etemadi M, Ravanbakhsh M. 2022. Microbial amelioration of salinity stress in endangered accessions of Iranian licorice (Glycyrrhiza glabra L.). BMC Plant Biology 22:322 doi: 10.1186/s12870-022-03703-9 |
| [166] |
Slimani A, Ait-El-Mokhtar M, Ben-Laouane R, Boutasknit A, Anli M, et al. 2024. Molecular and systems biology approaches for harnessing the symbiotic interaction in mycorrhizal symbiosis for grain and oil crop cultivation. International Journal of Molecular Sciences 25:912 doi: 10.3390/ijms25020912 |
| [167] |
Li WX, Oono Y, Zhu J, He XJ, Wu JM, et al. 2008. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. The Plant Cell 20:2238−51 doi: 10.1105/tpc.108.059444 |
| [168] |
Matzke MA, Mosher RA. 2014. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nature Reviews Genetics 15:394−408 doi: 10.1038/nrg3683 |
| [169] |
Law JA, Jacobsen SE. 2010. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Reviews Genetics 11:204−20 doi: 10.1038/nrg2719 |
| [170] |
Hu J, Xu T, Kang H. 2024. Crosstalk between RNA m6A modification and epigenetic factors for gene regulation in plants. Plant Communications 5:101037 doi: 10.1016/j.xplc.2024.101037 |
| [171] |
Bascompte J and Scheffer M. 2023. The resilience of plant–pollinator networks. Annual Review of Entomology 68:363−380 doi: 10.1146/annurev-ento-120120-102424 |
| [172] |
Liu C, Lu F, Cui X, Cao X. 2010. Histone methylation in higher plants. Annual Review of Plant Biology 61:395−420 doi: 10.1146/annurev.arplant.043008.091939 |
| [173] |
Budak H, Hussain B, Khan Z, Ozturk NZ, Ullah N. 2015. From genetics to functional genomics: improvement in drought signaling and tolerance in wheat. Frontiers in Plant Science 6:1012 doi: 10.3389/fpls.2015.01012 |
| [174] |
Karnwal A, Dohroo A, Malik T. 2023. Unveiling the potential of bioinoculants and nanoparticles in sustainable agriculture for enhanced plant growth and food security. BioMed Research International 2023:6911851 doi: 10.1155/2023/6911851 |
| [175] |
Shalaby TA, Bayoumi Y, Abdalla N, Taha H, Alshaal T, et al. 2016. Nanoparticles, soils, plants and sustainable agriculture. In Nanoscience in Food and Agriculture 1, eds Ranjan S, Dasgupta N, Lichtfouse E. Cham: Springer. pp. 283–312. doi: 10.1007/978-3-319-39303-2_10 |
| [176] |
Yadav A, Yadav K, Ahmad R, Abd-Elsalam KA. 2023. Emerging frontiers in nanotechnology for precision agriculture: advancements, hurdles and prospects. Agrochemicals 2:220−56 doi: 10.3390/agrochemicals2020016 |
| [177] |
Saradadevi GP, Das D, Mangrauthia SK, Mohapatra S, Chikkaputtaiah C, et al. 2021. Genetic, epigenetic, genomic and microbial approaches to enhance salt tolerance of plants: a comprehensive review. Biology 10:1255 doi: 10.3390/biology10121255 |
| [178] |
Behl K, Jaiswal P, Pabbi S. 2024. Recent advances in microbial and nano-formulations for effective delivery and agriculture sustainability. Biocatalysis and Agricultural Biotechnology 58:103180 doi: 10.1016/j.bcab.2024.103180 |
| [179] |
McNear DH Jr. 2013. The rhizosphere-roots soil and everything in between. Nature Education Knowledge 4(3):1 |
| [180] |
Nihorimbere V, Ongena M, Smargiassi M, Thonart P. 2011. Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnologie, Agronomie, Société et Environnement 15:327−37 |
| [181] |
Shah A, Nazari M, Antar M, Msimbira LA, Naamala J, et al. 2021. PGPR in agriculture: a sustainable approach to increasing climate change resilience. Frontiers in Sustainable Food Systems 5:667546 doi: 10.3389/fsufs.2021.667546 |
| [182] |
Muca E, Buonaiuto G, Lamanna M, Silvestrelli S, Ghiaccio F, et al. 2023. Reaching a wider audience: instagram's role in dairy cow nutrition education and engagement. Animals 13:3503 doi: 10.3390/ani13223503 |