[1] |
Du M, Spalding EP, Gray WM. 2020. Rapid auxin-mediated cell expansion. Annual Review of Plant Biology 71:379−402 doi: 10.1146/annurev-arplant-073019-025907 |
[2] |
Mazur E, Kulik I, Hajný J, Friml J. 2020. Auxin canalization and vascular tissue formation by TIR1/AFB-mediated auxin signaling in Arabidopsis. New Phytologist 226:1375−83 doi: 10.1111/nph.16446 |
[3] |
Thelander M, Landberg K, Muller A, Cloarec G, Cunniffe N, et al. 2022. Apical dominance control by TAR-YUC-mediated auxin biosynthesis is a deep homology of land plants. Current Biology 32:3838−3846.e5 doi: 10.1016/j.cub.2022.06.064 |
[4] |
Guo L, Luo X, Li M, Joldersma D, Plunkert M, Liu Z. 2022. Mechanism of fertilization-induced auxin synthesis in the endosperm for seed and fruit development. Nature Communications 13:3985 doi: 10.1038/s41467-022-31656-y |
[5] |
Goldental-Cohen S, Israeli A, Ori N, Yasuor H. 2017. Auxin response dynamics during wild-type and entire flower development in tomato. Plant and Cell Physiology 58:1661−72 doi: 10.1093/pcp/pcx102 |
[6] |
Walker JC, Key JL. 1982. Isolation of cloned cDNAs to auxin-responsive poly(A)+RNAs of elongating soybean hypocotyl. Proceedings of the National Academy of Sciences of the United States of America 79:7185−89 doi: 10.1073/pnas.79.23.7185 |
[7] |
Guan D, Hu X, Diao D, Wang F, Liu Y. 2019. Genome-wide analysis and identification of the Aux/IAA gene family in peach. International Journal of Molecular Sciences 20:4703 doi: 10.3390/ijms20194703 |
[8] |
Overvoorde PJ, Okushima Y, Alonso JM, Chan A, Chang C, et al. 2005. Functional genomic analysis of the AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabidopsis thaliana. The Plant Cell 17:3282−300 doi: 10.1105/tpc.105.036723 |
[9] |
Kalluri UC, Difazio SP, Brunner AM, Tuskan GA. 2007. Genome-wide analysis of Aux/IAA and ARF gene families in Populus trichocarpa. BMC Plant Biology 7:59 doi: 10.1186/1471-2229-7-59 |
[10] |
Su Y, He H, Wang P, Ma Z, Mao J, et al. 2021. Genome-wide characterization and expression analyses of the auxin/indole-3-acetic acid (Aux/IAA) gene family in apple (Malus domestica). Gene 768:145302 doi: 10.1016/j.gene.2020.145302 |
[11] |
Hu W, Zuo J, Hou X, Yan Y, Wei Y, et al. 2015. The auxin response factor gene family in banana: genome-wide identification and expression analyses during development, ripening, and abiotic stress. Frontiers in Plant Science 6:742 doi: 10.3389/fpls.2015.00742 |
[12] |
Lakehal A, Chaabouni S, Cavel E, Le Hir R, Ranjan A, et al. 2019. A molecular framework for the control of adventitious rooting by TIR1/AFB2-Aux/IAA-dependent auxin signaling in Arabidopsis. Molecular Plant 12:1499−514 doi: 10.1016/j.molp.2019.09.001 |
[13] |
Fendrych M, Leung J, Friml J. 2016. TIR1/AFB-Aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls. eLife 5:e19048 doi: 10.7554/eLife.19048 |
[14] |
Ding Y, Zeng W, Wang X, Wang Y, Niu L, et al. 2019. Over-expression of peach PpIAA19 in tomato alters plant growth, parthenocarpy, and fruit shape. Journal of Plant Growth Regulation 38:103−12 doi: 10.1007/s00344-018-9813-z |
[15] |
Xu C, Shen Y, He F, Fu X, Yu H, et al. 2019. Auxin-mediated Aux/IAA-ARF-HB signaling cascade regulates secondary xylem development in Populus. New Phytologist 222:752−67 doi: 10.1111/nph.15658 |
[16] |
Li N, Huang B, Tang N, Jian W, Zou J, et al. 2017. The MADS-Box Gene SlMBP21 regulates sepal size mediated by ethylene and auxin in tomato. Plant and Cell Physiology 58:2241−56 doi: 10.1093/pcp/pcx158 |
[17] |
Ke M, Gao Z, Chen J, Qiu Y, Zhang L, et al. 2018. Auxin controls circadian flower opening and closure in the waterlily. BMC Plant Biology 18:143 doi: 10.1186/s12870-018-1357-7 |
[18] |
Jia Y, Chen C, Gong F, Jin W, Zhang H, et al. 2022. An Aux/IAA family member, RhIAA14, involved in ethylene-inhibited petal expansion in rose (Rosa hybrida). Genes 13:1041 doi: 10.3390/genes13061041 |
[19] |
Gao Y, Liu C, Li X, Xu H, Liang Y, et al. 2016. Transcriptome profiling of petal abscission zone and functional analysis of an Aux/IAA family gene RhIAA16 involved in petal shedding in rose. Frontiers in Plant Science 7:1375 doi: 10.3389/fpls.2016.01375 |
[20] |
Salehin M, Li B, Tang M, Katz E, Song L, et al. 2019. Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels. Nature Communications 10:4021 doi: 10.1038/s41467-019-12002-1 |
[21] |
Wang Q, Shi H, Huang R, Ye R, Luo Y, et al. 2021. AIR12 confers cold tolerance through regulation of the CBF cold response pathway and ascorbate homeostasis. Plant, Cell & Environment 44:1522−33 doi: 10.1111/pce.14020 |
[22] |
Zhang A, Yang X, Lu J, Song F, Sun J, et al. 2021. OsIAA20, an Aux/IAA protein, mediates abiotic stress tolerance in rice through an ABA pathway. Plant Science 308:110903 doi: 10.1016/j.plantsci.2021.110903 |
[23] |
Jung H, Lee DK, Choi YD, Kim JK. 2015. OsIAA6, a member of the rice Aux/IAA gene family, is involved in drought tolerance and tiller outgrowth. Plant Science 236:304−12 doi: 10.1016/j.plantsci.2015.04.018 |
[24] |
Huang D, Wang Q, Duan D, Dong Q, Zhao S, et al. 2019. Overexpression of MdIAA9 confers high tolerance to osmotic stress in transgenic tobacco. PeerJ 7:e7935 doi: 10.7717/peerj.7935 |
[25] |
Jain M, Kaur N, Garg R, Thakur JK, Tyagi AK, et al. 2006. Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice (Oryza sativa). Functional & Integrative Genomics 6:47−59 doi: 10.1007/s10142-005-0005-0 |
[26] |
Jiang L, Li Z, Yu X, Liu C. 2021. Bioinformatics analysis of Aux/IAA gene family in maize. Agronomy Journal 113:932−42 doi: 10.1002/agj2.20594 |
[27] |
Liu R, Guo Z, Lu S. 2021. Genome-wide identification and expression analysis of the Aux/IAA and Auxin Response Factor gene family in Medicago truncatula. International Journal of Molecular Sciences 22:10494 doi: 10.3390/ijms221910494 |
[28] |
Weijers D, Wagner D. 2016. Transcriptional responses to the auxin hormone. Annual Review of Plant Biology 67:539−74 doi: 10.1146/annurev-arplant-043015-112122 |
[29] |
Dharmasiri N, Dharmasiri S, Estelle M. 2005. The F-box protein TIR1 is an auxin receptor. Nature 435:441−45 doi: 10.1038/nature03543 |
[30] |
Müllender M, Varrelmann M, Savenkov EI, Liebe S. 2021. Manipulation of auxin signalling by plant viruses. Molecular Plant Pathology 22:1449−58 doi: 10.1111/mpp.13122 |
[31] |
Wei S, Chen Y, Hou J, Yang Y, Yin T. 2021. Aux/IAA and ARF gene families in Salix suchowensis: identification, evolution, and dynamic transcriptome profiling during the plant growth process. Frontiers in Plant Science 12:666310 doi: 10.3389/fpls.2021.666310 |
[32] |
Luo J, Zhou JJ, Zhang JZ. 2018. Aux/IAA gene family in plants: molecular structure, regulation, and function. International Journal of Molecular Sciences 19:259 doi: 10.3390/ijms19010259 |
[33] |
Shi Q, Zhang Y, To VT, Shi J, Zhang D, et al. 2020. Genome-wide characterization and expression analyses of the auxin/indole-3-acetic acid (Aux/IAA) gene family in barley (Hordeum vulgare L.). Scientific Reports 10:10242 doi: 10.1038/s41598-020-66860-7 |
[34] |
Waseem M, Ahmad F, Habib S, Li Z. 2018. Genome-wide identification of the auxin/indole-3-acetic acid (Aux/IAA) gene family in pepper, its characterisation, and comprehensive expression profiling under environmental and phytohormones stress. Scientific Reports 8:12008 doi: 10.1038/s41598-018-30468-9 |
[35] |
Song S, Hao L, Zhao P, Xu Y, Zhong N, et al. 2019. Genome-wide identification, expression profiling and evolutionary analysis of Auxin Response Factor gene family in potato (Solanum tuberosum Group Phureja). Scientific Reports 9:1755 doi: 10.1038/s41598-018-37923-7 |
[36] |
Piya S, Shrestha SK, Binder B, Stewart CN Jr, Hewezi T. 2014. Protein-protein interaction and gene co-expression maps of ARFs and Aux/IAAs in Arabidopsis. Frontiers in Plant Science 5:744 doi: 10.3389/fpls.2014.00744 |
[37] |
Ye Y, Cao S, Shen L, Wang Y, Zhong S, et al. 2022. Comparative transcriptome analysis of CCCH family in roles of flower opening and abiotic stress in Osmanthus fragrans. International Journal of Molecular Sciences 23:15363 doi: 10.3390/ijms232315363 |
[38] |
Dong B, Wang Q, Zhou D, Wang Y, Miao Y, et al. 2024. Abiotic stress treatment reveals expansin like A gene OfEXLA1 improving salt and drought tolerance of Osmanthus fragrans by responding to abscisic acid. Horticultural Plant Journal 10:573−85 doi: 10.1016/j.hpj.2022.11.007 |
[39] |
Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution 38:3022−27 doi: 10.1093/molbev/msab120 |
[40] |
Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202 doi: 10.1016/j.molp.2020.06.009 |
[41] |
Yang Y, Miao Y, Zhong S, Fang Q, Wang Y, et al. 2022. Genome-wide identification and expression analysis of XTH gene family during flower-opening stages in Osmanthus fragrans. Plants 11:1015 doi: 10.3390/plants11081015 |