[1] |
Leghari SJ, Wahocho NA, Laghari GM, HafeezLaghari A, MustafaBhabhan G, et al. 2016. Role of nitrogen for plant growth and development: A review. Advances in Environmental Biology 10:209−19 |
[2] |
Rayner PJ, Fekete M, Gater CA, Ahwal F, Turner N, et al. 2022. Real-time high-sensitivity reaction monitoring of important nitrogen-cycle synthons by 15N hyperpolarized nuclear magnetic resonance. Journal of the American Chemical Society 144:8756−69 doi: 10.1021/jacs.2c02619 |
[3] |
Provin T, Hossner L. 2001. What happens to nitrogen in soils? Texas FARMER Collection. E596-01. Texas Agricultural Extension Service. |
[4] |
Metuzals J. 2014. Biological nitrogen fixation in agricultural systems. ENSC 501. www.qspace.library.queensu.ca |
[5] |
Herridge DF, Peoples MB, Boddey RM. 2008. Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil 311:1−18 doi: 10.1007/s11104-008-9668-3 |
[6] |
Schumann U, Huntrieser H. 2007. The global lightning-induced nitrogen oxides source. Atmospheric Chemistry and Physics 7:3823−907 doi: 10.5194/acp-7-3823-2007 |
[7] |
Medford AJ, Hatzell MC. 2017. Photon-driven nitrogen fixation: current progress, thermodynamic considerations, and future outlook. Acs Catalysis 7:2624−43 doi: 10.1021/acscatal.7b00439 |
[8] |
Liu H. 2014. Ammonia synthesis catalyst 100 years: Practice, enlightenment and challenge. Chinese Journal of Catalysis 35:1619−40 doi: 10.1016/S1872-2067(14)60118-2 |
[9] |
Schlögl R. 2003. Catalytic synthesis of Ammonia—A "Never-Ending Story"? Angewandte Chemie International Edition 42:2004−8 doi: 10.1002/anie.200301553 |
[10] |
Vojvodic A, Medford AJ, Studt F, Abild-Pedersen F, Khan TS, et al. 2014. Exploring the limits: A low-pressure, low-temperature Haber–Bosch process. Chemical Physics Letters 598:108−12 doi: 10.1016/j.cplett.2014.03.003 |
[11] |
Joseph Sekhar S, Samuel MS, Glivin G, Le TG, Mathimani T. 2024. Production and utilization of green ammonia for decarbonizing the energy sector with a discrete focus on Sustainable Development Goals and environmental impact and technical hurdles. Fuel 360:130626 doi: 10.1016/j.fuel.2023.130626 |
[12] |
Li R. 2018. Photocatalytic nitrogen fixation: an attractive approach for artificial photocatalysis. Chinese Journal of Catalysis 39:1180−88 doi: 10.1016/S1872-2067(18)63104-3 |
[13] |
Ismael M, Wark M. 2024. A recent review on photochemical and electrochemical nitrogen reduction to ammonia: Strategies to improve NRR selectivity and faradaic efficiency. Applied Materials Today 39:102253 doi: 10.1016/j.apmt.2024.102253 |
[14] |
Ishaq H, Crawford C. 2024. Review and evaluation of sustainable ammonia production, storage and utilization. Energy Conversion and Management 300:117869 doi: 10.1016/j.enconman.2023.117869 |
[15] |
Li L, Zhang P, Li N, Reyila T, Yu Y, et al. 2024. Application of g-C3N4-based photocatalysts for N2 photofixation. Journal of Environmental Chemical Engineering 12:112142 doi: 10.1016/j.jece.2024.112142 |
[16] |
Yuan SJ, Chen JJ, Lin ZQ, Li WW, Sheng GP, et al. 2013. Nitrate formation from atmospheric nitrogen and oxygen photocatalysed by nano-sized titanium dioxide. Nature Communications 4:2249 doi: 10.1038/ncomms3249 |
[17] |
Yahaya SM, Abdu N, Aliyu IA, Mukhtar B. 2024. Nanostructured materials in agriculture: The influence of bismuth ferrite and graphitic carbon nitride on maize growth performances in Samaru, Nigeria. Journal of Agriculture and Environment 19:237−53 doi: 10.4314/jagrenv.v19i2.22 |
[18] |
Nair PKR, Kumar BM, Nair VD. 2021. Biological nitrogen fixation and nitrogen fixing trees. In An Introduction to Agroforestry. Cham: Springer. pp. 413−43. doi: 10.1007/978-3-030-75358-0_17 |
[19] |
Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W. 2008. How a century of ammonia synthesis changed the world. Nature geoscience 1:636−39 doi: 10.1038/ngeo325 |
[20] |
Smil V. 2004. Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production. Cambridge, MA, USA: the MIT press. |
[21] |
Rubio LM, Ludden PW. 2008. Biosynthesis of the iron-molybdenum cofactor of nitrogenase. Annual Review of Microbiology 62:93−111 doi: 10.1146/annurev.micro.62.081307.162737 |
[22] |
Olivares J, Bedmar EJ, Sanjuán J. 2013. Biological nitrogen fixation in the context of global change. Molecular Plant-Microbe Interactions 26:486−94 doi: 10.1094/MPMI-12-12-0293-CR |
[23] |
Guo W, Zhang K, Liang Z, Zou R, Xu Q. 2019. Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design. Chemical Society Reviews 48:5658−716 doi: 10.1039/C9CS00159J |
[24] |
Hanson TE, Campbell BJ, Kalis KM, Campbell MA, Klotz MG. 2013. Nitrate ammonification by Nautilia profundicola AmH: experimental evidence consistent with a free hydroxylamine intermediate. Frontiers in microbiology 4:180 doi: 10.3389/fmicb.2013.00180 |
[25] |
Coskun D, Britto DT, Shi W, Kronzucker HJ. 2017. How plant root exudates shape the nitrogen cycle. Trends in Plant Science 22:661−73 doi: 10.1016/j.tplants.2017.05.004 |
[26] |
Chamoli A, Bhambri A, Karn SK, Raj V. 2024. Ammonia, nitrite transformations and their fixation by different biological and chemical agents. Chemistry and Ecology 40:166−99 doi: 10.1080/02757540.2023.2300780 |
[27] |
Khiari Z, Kaluthota S, Savidov N. 2019. Aerobic bioconversion of aquaculture solid waste into liquid fertilizer: Effects of bioprocess parameters on kinetics of nitrogen mineralization. Aquaculture 500:492−99 doi: 10.1016/j.aquaculture.2018.10.059 |
[28] |
Liu T, Wang Z, Wang S, Zhao Y, Wright AL, et al. 2019. Responses of ammonia-oxidizers and comammox to different long-term fertilization regimes in a subtropical paddy soil. European Journal of Soil Biology 93:103087 doi: 10.1016/j.ejsobi.2019.103087 |
[29] |
Soler-Jofra A, Pérez J, van Loosdrecht MC. 2021. Hydroxylamine and the nitrogen cycle: A review. Water Research 190:116723 doi: 10.1016/j.watres.2020.116723 |
[30] |
Smercina DN, Evans SE, Friesen ML, Tiemann LK. 2019. To fix or not to fix: controls on free-living nitrogen fixation in the rhizosphere. Applied and Environmental Microbiology 85:e02546-18 doi: 10.1128/AEM.02546-18 |
[31] |
Kolomeets LI, Smyshlyaev SP. 2021. Regional and global lightning activity effect on the composition and properties of the upper troposphere/lower stratosphere. Proc. SPIE 11916, 27 th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics, Moscow, Russian Federation, 2021. pp. 1492-502. doi: 10.1117/12.2604068 |
[32] |
Timmons AJ, Symes MD. 2015. Converting between the oxides of nitrogen using metal–ligand coordination complexes. Chemical Society Reviews 44:6708−22 doi: 10.1039/C5CS00269A |
[33] |
Zhao Y, Zhang L, Pan Y, Wang Y, Paulot F, Henze DK. 2015. Atmospheric nitrogen deposition to the northwestern Pacific: seasonal variation and source attribution. Atmospheric Chemistry and Physics 15:10905−24 doi: 10.5194/acp-15-10905-2015 |
[34] |
Schlögl R. 2008. Fused Catalysts. In Handbook of heterogeneous catalysis. USA: Wiley-VCH Verlag GmbH & Co. KGaA. pp. 2501−75. doi: 10.1002/9783527610044.hetcat0006 |
[35] |
Nielsen A. 1981. Ammonia synthesis: Exploratory and applied research. Catalysis Reviews 23:17−51 doi: 10.1080/03602458108068067 |
[36] |
Soloveichik G. 2019. Electrochemical synthesis of ammonia as a potential alternative to the Haber–Bosch process. Nature Catalysis 2:377−80 doi: 10.1038/s41929-019-0280-0 |
[37] |
Kyriakou V, Garagounis I, Vourros A, Vasileiou E, Stoukides M. 2020. An electrochemical Haber-Bosch process. Joule 4:142−58 doi: 10.1016/j.joule.2019.10.006 |
[38] |
Bicer Y, Dincer I, Vezina G, Raso F. 2017. Impact assessment and environmental evaluation of various ammonia production processes. Environmental Management 59:842−55 doi: 10.1007/s00267-017-0831-6 |
[39] |
Shi Y, Xiao M, Luo L, Zhang Y, Wang S, et al. 2018. Bi2O3/BiFeO3 heterostructure: preparation, characterization, and photocatalytic activity. Chemical Papers 72:1327−37 doi: 10.1007/s11696-018-0384-z |
[40] |
Ješić D, Pomeroy B, Kamal KM, Kovačič Ž, Huš M, et al. 2024. Photo-and photoelectrocatalysis in nitrogen reduction reactions to ammonia: interfaces, mechanisms, and modeling simulations. Advanced Energy and Sustainability Research 5:2400083 doi: 10.1002/aesr.202400083 |
[41] |
Rong X, Mao Y, Xu J, Zhang X, Zhang L, et al. 2018. Bi2Te3 sheet contributing to the formation of flower-like BiOCl composite and its N2 photofixation ability enhancement. Catalysis Communications 116:16−19 doi: 10.1016/j.catcom.2018.07.018 |
[42] |
Yang J, Wang D, Han H, Li C. 2013. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Accounts of Chemical Research 46:1900−9 doi: 10.1021/ar300227e |
[43] |
Hisatomi T, Kubota J, Domen K. 2014. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chemical Society Reviews 43:7520−35 doi: 10.1039/C3CS60378D |
[44] |
Yu B, Chen X, Huang C, Yao W. 2022. 2D CdS functionalized by NiS2-doped carbon nanosheets for photocatalytic H2 evolution. Applied Surface Science 592:153259 doi: 10.1016/j.apsusc.2022.153259 |
[45] |
Li R. 2017. Latest progress in hydrogen production from solar water splitting via photocatalysis, photoelectrochemical, and photovoltaic-photoelectrochemical solutions. Chinese Journal of Catalysis 38:5−12 doi: 10.1016/S1872-2067(16)62552-4 |
[46] |
Yang F, Hu P, Yang F, Hua XJ, Chen B, et al. 2024. Photocatalytic applications and modification methods of two-dimensional nanomaterials: a review. Tungsten 6:77−113 doi: 10.1007/s42864-023-00229-x |
[47] |
Xin X, Douair I, Zhao Y, Wang S, Maron L, et al. 2020. Dinitrogen cleavage by a heterometallic cluster featuring multiple uranium–rhodium bonds. Journal of the American Chemical Society 142:15004−11 doi: 10.1021/jacs.0c05788 |
[48] |
Hao Q, Liu C, Jia G, Wang Y, Arandiyan H, et al. 2020b. Catalytic reduction of nitrogen to produce ammonia by bismuth-based catalysts: state of the art and future prospects. Materials horizons 7:1014−29 doi: 10.1039/C9MH01668F |
[49] |
Ma XL, Liu JC, Xiao H, Li J. 2018. Surface single-cluster catalyst for N2-to-NH3 thermal conversion. Journal of the American Chemical Society 140:46−49 doi: 10.1021/jacs.7b10354 |
[50] |
Natarajan TS, Mozhiarasi V, Tayade RJ. 2021. Nitrogen doped titanium dioxide (N-TiO2): synopsis of synthesis methodologies, doping mechanisms, property evaluation and visible light photocatalytic applications. Photochem 1:371−410 doi: 10.3390/photochem1030024 |
[51] |
Nabeel MI, Hussain D, Ahmad N, Najam-ul-Haq M, Musharraf SG. 2023. Recent advancements in fabrication and photocatalytic applications of graphitic carbon nitride-tungsten oxide nanocomposites. Nanoscale Advances 5:5214−55 doi: 10.1039/D3NA00159H |
[52] |
Zhang H. 2015. Ultrathin two-dimensional nanomaterials. ACS Nano 9:9451−69 doi: 10.1021/acsnano.5b05040 |
[53] |
Schrauzer GN, Guth TD. 1977. Photolysis of water and photoreduction of nitrogen on titanium dioxide. Journal of the American Chemical Society 99:7189−93 doi: 10.1021/ja00464a015 |
[54] |
Brown KA, Harris DF, Wilker MB, Rasmussen A, Khadka N, et al. 2016. Light-driven dinitrogen reduction catalyzed by a CdS: nitrogenase MoFe protein biohybrid. Science 352:448−50 doi: 10.1126/science.aaf2091 |
[55] |
Zhang L, Hamers RJ. 2017. Photocatalytic reduction of CO2 to CO by diamond nanoparticles. Diamond and Related Materials 78:24−30 doi: 10.1016/j.diamond.2017.07.005 |
[56] |
Ye L, Han C, Ma Z, Leng Y, Li J, et al. 2017. Ni2P loading on Cd0.5Zn0.5S solid solution for exceptional photocatalytic nitrogen fixation under visible light. Chemical Engineering Journal 307:311−18 doi: 10.1016/j.cej.2016.08.102 |
[57] |
Dong G, Ho W, Wang C. 2015. Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies. Journal of Materials Chemistry A 3:23435−41 doi: 10.1039/C5TA06540B |
[58] |
Di T, Zhu B, Cheng B, Yu J, Xu J. 2017. A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance. Journal of Catalysis 352:532−41 doi: 10.1016/j.jcat.2017.06.006 |
[59] |
Shi A, Li H, Yin S, Hou Z, Rong J, et al. 2018. Photocatalytic NH3 versus H2 evolution over g-C3N4/CsxWO3: O2 and methanol tipping the scale. Applied Catalysis B: Environmental 235:197−206 doi: 10.1016/j.apcatb.2018.04.081 |
[60] |
Rao NN, Dube S, Manjubala, Natarajan P. 1994. Photocatalytic reduction of nitrogen over (Fe, Ru or Os)/TiO2 catalysts. Applied Catalysis B: Environmental 5:33−42 doi: 10.1016/0926-3373(94)00042-5 |
[61] |
Sun S, An Q, Wang W, Zhang L, Liu J, et al. 2017. Efficient photocatalytic reduction of dinitrogen to ammonia on bismuth monoxide quantum dots. Journal of Materials Chemistry A 5:201−9 doi: 10.1039/C6TA09275F |
[62] |
Zhang G, Sewell CD, Zhang P, Mi H, Lin Z. 2020. Nanostructured photocatalysts for nitrogen fixation. Nano Energy 71:104645 doi: 10.1016/j.nanoen.2020.104645 |
[63] |
Su T, Shao Q, Qin Z, Guo Z, Wu Z. 2018. Role of Interfaces in Two-Dimensional Photocatalyst for Water Splitting. ACS Catalysis 8:2253−76 doi: 10.1021/acscatal.7b03437 |
[64] |
Lee J, Lim TS, Jo SG, Jeong S, Paik HJ, et al. 2023. Phase controlled Fe2N@Fe3O4 core-shell nanoparticles hybridized with nitrogen-doped reduced graphene oxide for boosted charge transfer in asymmetric supercapacitor. Chemical Engineering Journal 476:146515 doi: 10.1016/j.cej.2023.146515 |
[65] |
Goyal RK. 2017. Nanomaterials and nanocomposites: synthesis, properties, characterization techniques, and applications. 1st Editon. Boca Raton: CRC Press. doi: 10.1201/9781315153285 |
[66] |
Jin H, Sun Y, Sun Z, Yang M, Gui R. 2021. Zero-dimensional sulfur nanomaterials: Synthesis, modifications and applications. Coordination Chemistry Reviews 438:213913 doi: 10.1016/j.ccr.2021.213913 |
[67] |
Wang S, Hai X, Ding X, Chang K, Xiang Y, et al. 2017. Light-switchable oxygen vacancies in ultrafine Bi5O7Br nanotubes for boosting solar-driven nitrogen fixation in pure water. Advanced Materials 29:1701774 doi: 10.1002/adma.201701774 |
[68] |
Zhang N, Jalil A, Wu D, Chen S, Liu Y, et al. 2018b. Refining defect states in W18O49 by Mo doping: a strategy for tuning N2 activation towards solar-driven nitrogen fixation. Journal of the American Chemical Society 140:9434−43 doi: 10.1021/jacs.8b02076 |
[69] |
Zhao J, Chen Z. 2017. Single Mo atom supported on defective boron nitride monolayer as an efficient electrocatalyst for nitrogen fixation: a computational study. Journal of the American Chemical Society 139:12480−87 doi: 10.1021/jacs.7b05213 |
[70] |
Gao X, An L, Qu D, Jiang W, Chai Y, et al. 2019a. Enhanced photocatalytic N2 fixation by promoting N2 adsorption with a co-catalyst. Science Bulletin 64:918−25 doi: 10.1016/j.scib.2019.05.009 |
[71] |
Li Y, Chen X, Zhang M, Zhu Y, Ren W, et al. 2019. Oxygen vacancy-rich MoO3−x nanobelts for photocatalytic N2 reduction to NH3 in pure water. Catalysis Science & Technology 9:803−10 doi: 10.1039/C8CY02357C |
[72] |
Di J, Xia J, Chisholm MF, Zhong J, Chen C, et al. 2019. Defect-tailoring mediated electron-hole separation in single-unit-cell Bi3O4Br nanosheets for boosting photocatalytic hydrogen evolution and nitrogen fixation. Advanced Materials 31:1807576 doi: 10.1002/adma.201807576 |
[73] |
Zhao Y, Zhao Y, Waterhouse GIN, Zheng L, Cao X, et al. 2017. Layered-double-hydroxide nanosheets as efficient visible-light-driven photocatalysts for dinitrogen fixation. Advanced Materials 29:1703828 doi: 10.1002/adma.201703828 |
[74] |
Zhao Y, Zhao Y, Shi R, Wang B, Waterhouse GIN, et al. 2019. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Advanced Materials 31:1806482 doi: 10.1002/adma.201806482 |
[75] |
Li X, Wang W, Jiang D, Sun S, Zhang L, et al. 2016. Efficient solar-driven nitrogen fixation over carbon-tungstic-acid hybrids. Chemistry – A European Journal 22:13819−22 doi: 10.1002/chem.201603277 |
[76] |
Bokov D, Turki Jalil A, Chupradit S, Suksatan W, Javed Ansari M, et al. 2021. Nanomaterial by sol-gel method: synthesis and application. Advances in Materials Science and Engineering 2021:5102014 doi: 10.1155/2021/5102014 |
[77] |
Zhang H, Li X, Su H, Chen X, Zuo S, et al. 2019. Sol–gel synthesis of upconversion perovskite/attapulgite heterostructures for photocatalytic fixation of nitrogen. Journal of Sol-Gel Science and Technology 92:154−62 doi: 10.1007/s10971-019-05071-7 |
[78] |
Li J, Wang D, Guan R, Zhang Y, Zhao Z, et al. 2020. Vacancy-enabled mesoporous TiO2 modulated by nickel doping with enhanced photocatalytic nitrogen fixation performance. ACS Sustainable Chemistry & Engineering 8:18258−65 doi: 10.1021/acssuschemeng.0c06775 |
[79] |
Song G, Gao R, Zhao Z, Zhang Y, Tan H, et al. 2022. High-spin state Fe (III) doped TiO2 for electrocatalytic nitrogen fixation induced by surface F modification. Applied Catalysis B: Environmental 301:120809 doi: 10.1016/j.apcatb.2021.120809 |
[80] |
Haruna A, Abdulkadir I, Idris SO. 2020. Photocatalytic activity and doping effects of BiFeO3 nanoparticles in model organic dyes. Heliyon 6:e03237 doi: 10.1016/j.heliyon.2020.e03237 |
[81] |
Aruna K, Rao KR, Parhana P. 2015. A systematic review on nanomaterials: properties, synthesis and applications. i-manager's Journal on Future Engineering and Technology 11:25 doi: 10.26634/jfet.11.2.4820 |
[82] |
Jeon IY, Choi HJ, Ju MJ, Choi IT, Lim K, et al. 2013. Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion. Scientific Reports 3:22060 doi: 10.1038/srep02260 |
[83] |
He C, Li Q, Zhang X, Lu Y, Qiu D, et al. 2022. Mechanochemical synthesis of ammonia employing H2O as the proton source under room temperature and atmospheric pressure. ACS Sustainable Chemistry & Engineering 10:746−55 doi: 10.1021/acssuschemeng.1c05643 |
[84] |
Muthuvijayan S, Balasubramanian S, Theivasanthi T, Gopinath SC. 2024. Sodium lauryl sulphate-mediated synthesis: Unravelling the optimization path for enhanced stability and optical properties of cadmium sulphide nanoparticles. Process Biochemistry 138:57−66 doi: 10.1016/j.procbio.2024.01.005 |
[85] |
Lassoued A, Lassoued MS, Dkhil B, Gadri A, Ammar S. 2017. Structural, optical and morphological characterization of Cu-doped α-Fe2O3 nanoparticles synthesized through co-precipitation technique. Journal of Molecular Structure 1148:276−81 doi: 10.1016/j.molstruc.2017.07.051 |
[86] |
Rohokale MS, Dhabliya D, Sathish T, Vijayan V, Senthilkumar N. 2021. A novel two-step co-precipitation approach of CuS/NiMn2O4 heterostructured nanocatalyst for enhanced visible light driven photocatalytic activity via efficient photo-induced charge separation properties. Physica B: Condensed Matter 610:412902 doi: 10.1016/j.physb.2021.412902 |
[87] |
Gan YX, Jayatissa AH, Yu Z, Chen X, Li M. 2020. Hydrothermal synthesis of nanomaterials. Journal of Nanomaterials 2020:8917013 doi: 10.1155/2020/8917013 |
[88] |
Grabowska E. 2016. Selected perovskite oxides: Characterization, preparation and photocatalytic properties—A review. Applied Catalysis B: Environmental 186:97−126 doi: 10.1016/j.apcatb.2015.12.035 |
[89] |
Feng S, Xu R. 2001. New materials in hydrothermal synthesis. Accounts of Chemical Research 34:239−47 doi: 10.1021/ar0000105 |
[90] |
Hao C, Liao Y, Wu Y, An Y, Lin J, et al. 2020a. RuO2-loaded TiO2–MXene as a high performance photocatalyst for nitrogen fixation. Journal of Physics and Chemistry of Solids 136:109141 doi: 10.1016/j.jpcs.2019.109141 |
[91] |
Zhang W, Xing P, Zhang J, Chen L, Yang J, et al. 2021. Facile preparation of novel nickel sulfide modified KNbO3 heterojunction composite and its enhanced performance in photocatalytic nitrogen fixation. Journal of Colloid and Interface Science 590:548−60 doi: 10.1016/j.jcis.2021.01.086 |
[92] |
Zeng L, Zhe F, Wang Y, Zhang Q, Zhao X, et al. 2019. Preparation of interstitial carbon doped BiOI for enhanced performance in photocatalytic nitrogen fixation and methyl orange degradation. Journal of Colloid and Interface Science 539:563−74 doi: 10.1016/j.jcis.2018.12.101 |
[93] |
Farhadi S, Zaidi M. 2009. Bismuth ferrite (BiFeO3) nanopowder prepared by sucrose-assisted combustion method: a novel and reusable heterogeneous catalyst for acetylation of amines, alcohols and phenols under solvent-free conditions. Journal of Molecular Catalysis A: Chemical 299:18−25 doi: 10.1016/j.molcata.2008.10.013 |
[94] |
Lam SM, Sin JC, Mohamed AR. 2017. A newly emerging visible light-responsive BiFeO3 perovskite for photocatalytic applications: a mini review. Materials Research Bulletin 90:15−30 doi: 10.1016/j.materresbull.2016.12.052 |
[95] |
Wang J, Wang T, Zhao Z, Wang R, Wang C, et al. 2022. Regulation of oxygen vacancies in SrTiO3 perovskite for efficient photocatalytic nitrogen fixation. Journal of Alloys and Compounds 902:163865 doi: 10.1016/j.jallcom.2022.163865 |
[96] |
Khorsand Zak A, Esmaeilzadeh J, Hashim AM. 2024. Exploring the gelatin-based sol-gel approach: A convenient route for fabricating high-quality pure and doped ZnO nanostructures. Ceramics International 50:12649−63 doi: 10.1016/j.ceramint.2024.01.254 |
[97] |
Kunjomana AG, Bibin J, Athira RC, Teena M. 2024. Planetary ball milling and tailoring of the optoelectronic properties of monophase SnSe nanoparticles. Journal of Electronic Materials 53:298−311 doi: 10.1007/s11664-023-10770-7 |
[98] |
Korotcenkov G, Pronin IA. 2023. Synthesis of II-VI Semiconductor Nanocrystals. In Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors. Materials and Technology, ed. Korotcenkov G. Volume 1. Cham: Springer. pp. 277−323. doi: 10.1007/978-3-031-19531-0_11 |
[99] |
Esmaeilnejad-Ahranjani P, Lotfi M. 2023. Surfactant-assisted combustion synthesis of agglomerated-free, size-and shape-controlled magnetic iron oxide nanoparticles for biomedical applications. Ceramics International 49:25113−20 doi: 10.1016/j.ceramint.2023.05.041 |
[100] |
Dincer I, Zamfirescu C. 2016. Hydrogen Production by Photonic Energy. In Sustainable Hydrogen Production, ed. Dincer I, Zamfirescu C. Netherlands: Elsevier. pp. 309−91. doi: 10.1016/b978-0-12-801563-6.00005-4 |
[101] |
Feng Y, Zhang Z, Zhao K, Lin S, Li H, et al. 2021. Photocatalytic nitrogen fixation: Oxygen vacancy modified novel micro-nanosheet structure Bi2O2CO3 with band gap engineering. Journal of Colloid and Interface Science 583:499−509 doi: 10.1016/j.jcis.2020.09.089 |
[102] |
Hu X, Zhang W, Yong Y, Xu Y, Wang X, et al. 2020a. One-step synthesis of iodine-doped g-C3N4 with enhanced photocatalytic nitrogen fixation performance. Applied Surface Science 510:145413 doi: 10.1016/j.apsusc.2020.145413 |
[103] |
Song M, Wang L, Li J, Sun D, Guan R, et al. 2021. Defect density modulation of La2TiO5: An effective method to suppress electron-hole recombination and improve photocatalytic nitrogen fixation. Journal of Colloid and Interface Science 602:748−55 doi: 10.1016/j.jcis.2021.06.055 |
[104] |
Hu X, Yong Y, Xu Y, Hong X, Weng Y, et al. 2020b. Enhanced photocatalytic nitrogen fixation of AgI modified g-C3N4 with nitrogen vacancy synthesized by an in-situ decomposition-thermal polymerization method. Applied Surface Science 531:147348 doi: 10.1016/j.apsusc.2020.147348 |
[105] |
Ye X, Li X, Chu X, Wang Z, Zuo S, et al. 2021. In situ construction of Fe substituted palygorskite/FeS2 heterostructure for full-spectrum photocatalytic nitrogen fixation. Journal of Alloys and Compounds 871:159542 doi: 10.1016/j.jallcom.2021.159542 |
[106] |
Xu H, Wang Y, Dong X, Zheng N, Ma H, et al. 2019. Fabrication of In2O3/In2S3 microsphere heterostructures for efficient and stable photocatalytic nitrogen fixation. Applied Catalysis B: Environmental 257:117932 doi: 10.1016/j.apcatb.2019.117932 |
[107] |
Yao X, Zhang W, Huang J, Du Z, Hong X, et al. 2020. Enhanced photocatalytic nitrogen fixation of Ag/B-doped g-C3N4 nanosheets by one-step in-situ decomposition-thermal polymerization method. Applied Catalysis A: General 601:117647 doi: 10.1016/j.apcata.2020.117647 |
[108] |
Liu X, Han X, Liang Z, Xue Y, Zhou Y, et al. 2022. Phosphorous-doped 1T-MoS2 decorated nitrogen-doped g-C3N4 nanosheets for enhanced photocatalytic nitrogen fixation. Journal of Colloid and Interface Science 605:320−29 doi: 10.1016/j.jcis.2021.07.111 |
[109] |
Lan M, Wang Y, Dong X, Yang F, Zheng N, et al. 2022. Controllable fabrication of sulfur-vacancy-rich Bi2S3 nanorods with efficient near-infrared light photocatalytic for nitrogen fixation. Applied Surface Science 591:153205 doi: 10.1016/j.apsusc.2022.153205 |
[110] |
Chen C, Ji R, Xia X, Jin L, Deng K, et al. 2024. Dispersed Bi2S3 site in a porphyrin-based metal–organic framework for photocatalytic nitrogen fixation. Applied Energy 357:122508 doi: 10.1016/j.apenergy.2023.122508 |
[111] |
Huang C, Ma Y, Cheng Q, Liu X, Sun H, et al. 2024. Effective 1D/2D nanostructured S-scheme W18O49/g-C3N4 heterojunction photocatalyst fabrication for improved photocatalytic nitrogen fixation performance. Applied Surface Science 659:159952 doi: 10.1016/j.apsusc.2024.159952 |
[112] |
Sun T, Gao P, He Y, Wu Z, Liu J, et al. 2024. Dual Z-scheme TCN/ZnS/ZnIn2S4 with efficient separation for photocatalytic nitrogen fixation. Journal of Colloid and Interface Science 654:602−11 doi: 10.1016/j.jcis.2023.10.023 |
[113] |
Chen X, Li N, Kong Z, Ong WJ, Zhao X. 2018. Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and future prospects. Materials Horizons 5:9−27 doi: 10.1039/C7MH00557A |
[114] |
Guo LJ, Wang YJ, He T. 2016. Photocatalytic reduction of CO2 over heterostructure semiconductors into value-added chemicals. The Chemical Record 16:1918−33 doi: 10.1002/tcr.201600008 |
[115] |
Chen D, Wang K, Hong W, Zong R, Yao W, et al. 2015. Visible light photoactivity enhancement via CuTCPP hybridized g-C3N4 nanocomposite. Applied Catalysis B: Environmental 166:366−73 doi: 10.1016/j.apcatb.2014.11.050 |
[116] |
Furube A, Asahi T, Masuhara H, Yamashita H, Anpo M. 1999. Charge carrier dynamics of standard TiO2 catalysts revealed by femtosecond diffuse reflectance spectroscopy. The Journal of Physical Chemistry B 103:3120−27 doi: 10.1021/jp984162h |
[117] |
Singh PP, Srivastava V. 2022. Recent advances in visible-light graphitic carbon nitride (gC3N4) photocatalysts for chemical transformations. RSC Advances 12:18245−65 doi: 10.1039/d2ra01797k |
[118] |
Xue Y, Wang X, Liang Z, Zhang X, Tian J. 2022. The fabrication of graphitic carbon nitride hollow nanocages with semi-metal 1T' phase molybdenum disulfide as co-catalysts for excellent photocatalytic nitrogen fixation. Journal of Colloid and Interface Science 608:1229−37 doi: 10.1016/j.jcis.2021.10.153 |
[119] |
Shen ZK, Yuan YJ, Wang P, Bai W, Pei L, et al. 2020. Few-layer black phosphorus nanosheets: a metal-free cocatalyst for photocatalytic nitrogen fixation. ACS Applied Materials & Interfaces 12:17343−52 doi: 10.1021/acsami.9b21167 |
[120] |
Zhou N, Qiu P, Chen H, Jiang F. 2018. KOH etching graphitic carbon nitride for simulated sunlight photocatalytic nitrogen fixation with cyano groups as defects. Journal of the Taiwan Institute of Chemical Engineers 83:99−106 doi: 10.1016/j.jtice.2017.11.028 |
[121] |
Gao X, Shang Y, Liu L, Fu F. 2019b. Chemisorption-enhanced photocatalytic nitrogen fixation via 2D ultrathin p-n heterojunction AgCl/δ-Bi2O3 nanosheets. Journal of Catalysis 371:71−80 doi: 10.1016/j.jcat.2019.01.002 |
[122] |
Lee J, Park H, Choi W. 2002. Selective photocatalytic oxidation of NH3 to N2 on platinized TiO2 in water. Environmental Science & Technology 36:5462−68 doi: 10.1021/es025930s |
[123] |
Hayat A, Sohail M, Ajmal Z, Abd El-Gawad HH, Ghernaout D, et al. 2024. Advances/Scope and prospects of g-C3N4 derived fascinating photocatalyst as a leading route towards solar energy adaption. Journal of Cleaner Production 438:140568 doi: 10.1016/j.jclepro.2024.140568 |
[124] |
Mohebinia M, Xing X, Yang G, Wang D, Solares-Bockmon C, et al. 2022. Enhanced photocatalytic ammonia generation from water and nitrogen by decorating BiOCl nanosheets with CoOOH oxygen evolution reaction cocatalyst. Materials Today Chemistry 24:100993 doi: 10.1016/j.mtchem.2022.100993 |
[125] |
Ma Y, Chaitoglou S, Farid G, Amade R, Ospina R, et al. 2024. Supercapacitive performance of electrodes based on defective ZnO nanorods anchored on graphene nanowalls. Chemical Engineering Journal 488:151135 doi: 10.1016/j.cej.2024.151135 |
[126] |
Vu MH, Sakar M, Nguyen CC, Do TO. 2018. Chemically bonded Ni cocatalyst onto the S doped g-C3N4 nanosheets and their synergistic enhancement in H2 production under sunlight irradiation. ACS Sustainable Chemistry & Engineering 6:4194−203 doi: 10.1021/acssuschemeng.7b04598 |
[127] |
Yue J. 2018. Multiphase flow processing in microreactors combined with heterogeneous catalysis for efficient and sustainable chemical synthesis. Catalysis Today 308:3−19 doi: 10.1016/j.cattod.2017.09.041 |
[128] |
Yang C, Zhang Y, Yue F, Du R, Ma T, et al. 2023. Co doping regulating electronic structure of Bi2MoO6 to construct dual active sites for photocatalytic nitrogen fixation. Applied Catalysis B: Environmental 338:123057 doi: 10.1016/j.apcatb.2023.123057 |
[129] |
Skúlason E, Bligaard T, Gudmundsdóttir S, Studt F, Rossmeisl J, et al. 2012. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Physical Chemistry Chemical Physics 14:1235−45 doi: 10.1039/C1CP22271F |
[130] |
Sun Y, Ahmadi Y, Kim KH, Lee J. 2022. The use of bismuth-based photocatalysts for the production of ammonia through photocatalytic nitrogen fixation. Renewable and Sustainable Energy Reviews 170:112967 doi: 10.1039/c1cp22271f |
[131] |
Wei Z, Zhang Y, Wang S, Wang C, Ma J. 2018. Fe-doped phosphorene for the nitrogen reduction reaction. Journal of Materials Chemistry A 6:13790−96 doi: 10.1039/C8TA03989E |
[132] |
Vu MH, Sakar M, Hassanzadeh-Tabrizi SA, Do TO. 2019. Photo (electro) catalytic nitrogen fixation: problems and possibilities. Advanced Materials Interfaces 6:1900091 doi: 10.1002/admi.201900091 |
[133] |
Zhang J, Tian B, Wang L, Xing M, Lei J. 2018a. Photocatalysis: fundamentals, materials and applications. Singapore: Springer doi: 10.1007/978-981-13-2113-9 |
[134] |
Su Q, Li Y, Hu R, Song F, Liu S, et al. 2020b. Heterojunction photocatalysts based on 2D materials: the role of configuration. Advanced Sustainable Systems 4:2000130 doi: 10.1002/adsu.202000130 |
[135] |
Fan J, Zuo M, Ding Z, Zhao Z, Liu J, et al. 2020. A readily synthesis of oxygen vacancy-induced In(OH)3/carbon nitride 0D/2D heterojunction for enhanced visible-light-driven nitrogen fixation. Chemical Engineering Journal 396:125263 doi: 10.1016/j.cej.2020.125263 |
[136] |
Devthade V, Gupta A, Umare SS. 2018. Graphitic carbon nitride-γ-gallium oxide (GCN-γ-Ga2O3) nanohybrid photocatalyst for dinitrogen fixation and pollutant decomposition. ACS Applied Nano Materials 1:5581−88 doi: 10.1021/acsanm.8b01145 |
[137] |
Dhakshinamoorthy A, Li Z, Yang S, Garcia H. 2024. Metal–organic framework heterojunctions for photocatalysis. Chemical Society Reviews 53:3002−35 doi: 10.1039/D3CS00205E |
[138] |
Lee J, Tan LL, Chai SP. 2021. Heterojunction photocatalysts for artificial nitrogen fixation: fundamentals, latest advances and future perspectives. Nanoscale 13:7011−33 doi: 10.1039/D1NR00783A |
[139] |
Tu B, Hao J, Wang F, Li Y, Li J, et al. 2023. Element doping adjusted the built-in electric field at the TiO2/CdS interface to enhance the photocatalytic reduction activity of Cr(VI). Chemical Engineering Journal 456:141103 doi: 10.1016/j.cej.2022.141103 |